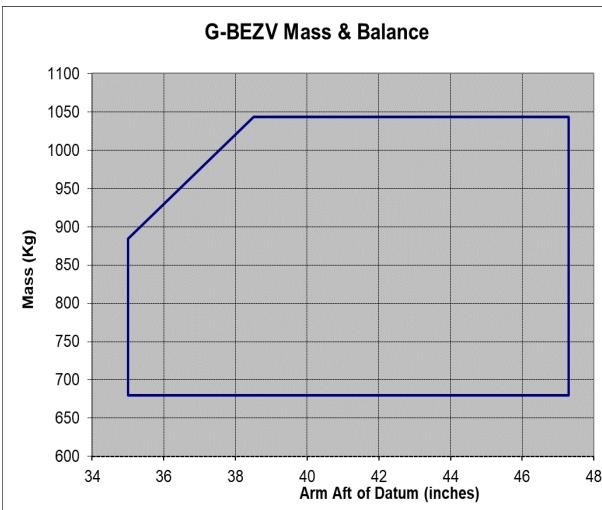


	Weight (Kg)	Arm Aft of Datum (in)	Moment	
Basic A/c Wt	674	39.59	26684	
Front Seats		37		
Rear Seats		73		
Bag 1		95		Max 54Kg
Bag 2		123		Max 23 Kg
Total Zero Fuel		*		Bag max 54 Kg Total
Fuel (0.72kg/l)		48		Max 182 L
Total		*		Max 1043 Kg

Fuel Required Litres	
Start/Taxy	4
Climb	7
Route	
Diversion	
5% Contingency	
Reserve	25
Total	
Loaded	
Endurance	

Date	
Off Block	
T/O	
Land	
On Block	



G-BEZV

Complete the table and calculate the C of G (*) for Zero Fuel and Departure Fuel.

$$C of G = \frac{\text{Total Moment}}{\text{Total Mass}}$$

Plot the C of G against mass in the graph for both cases. The resultant straight line must remain within the envelope.

Departure ATIS		Arrival ATIS	
Clearances / Remark/Observations			