

www.hy-lok.com

Catalog No. H-BL200
Apr. 2023

Forged Bellows Valves

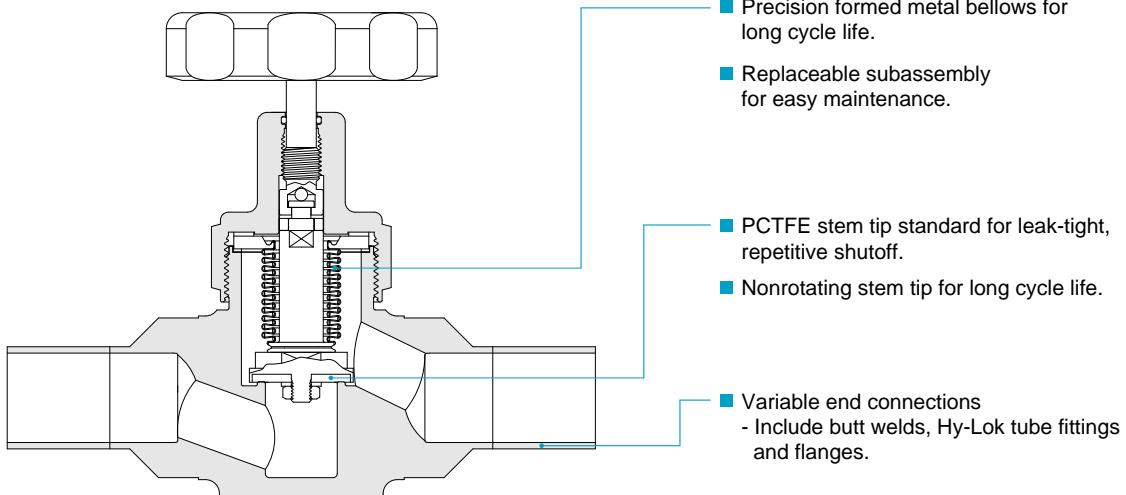
BLF Series

Design & Engineering

- Forged body bellows valves
- Maximum working pressure is up to 145 psig (10 bar)
- Temperature rating is up to 200°F (93°C)
- Tube & pipe butt weld, Hy-Lok tube fitting, and Flange ends
- 100% helium leak tested

Application

- Semiconductor
- Biotech
- Pharmaceutical


HY-LOK CORPORATION

©2006-2023 HY-LOK CORPORATION all rights reserved

Features

- Forged body reduced the total weight.
- Choice of Butt weld, Hy-Lok tube fitting and Flange Type.
- Easily Purged to maintain clean operation.
- Bottom mounting standard.
- 100% helium leak tested.

Materials

No.	Description	Material / ASTM Specification
1	Body	Single Vacuum Melt 316L / A479
2	Bellows	Type 321 / A269
3	Stem Tip	PCTFE
4	Gasket	PCTFE
5	Bonnet	Type 316 / A479
6	Handle	Aluminum

Specification

Series	Orifice in. (mm)	Cv	Pressure Rating psig (bar)	Temp. Rating °F (°C)
BLFV1	0.472(12.0)	2.6	Round Handle : 145 (10)	-20 ~ 200 (-28 ~ 93)
BLFV2	0.59(15.0)	2.9	Normally Open : 145 (10)	
BLFV3	0.787(20.0)	4.8	Normally Close : 125 (8.6)	

Internal Surface Grade

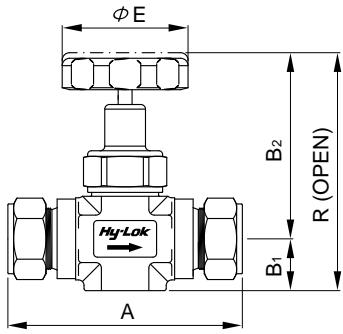
Grade	Designator	Roughness Average Ra. (E.P.)	Packing Standard Class 10
B.A.	B	0.25 μ m (10 μ in)	Double
High	H	0.13 μ m (5 μ in)	

● Grade "B.A." is standard.

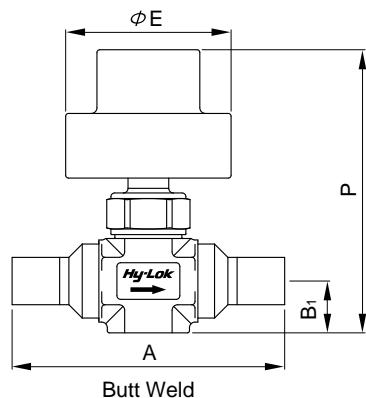
Cleaning & Testing

Passivation is done at Nitrogen environment. Fine cleaning is one by Ultrasonic cleansing with resistivity over 18M Ω D.I water after finishing the passivation. Inboard helium leak tested to a rate of 4×10^{-9} cm 3 /s.

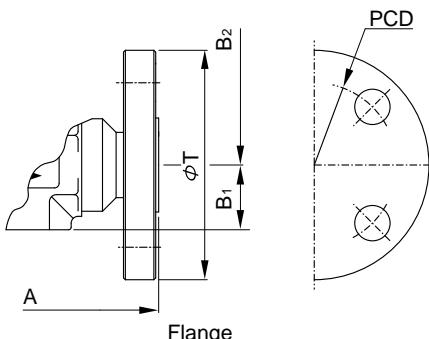
Assembly & Packaging


Assembly and Packaging is performed in the clean room of Class 10. Valves are packed with anti-static polyethylene bag that is pressured into the high purity nitrogen gas.

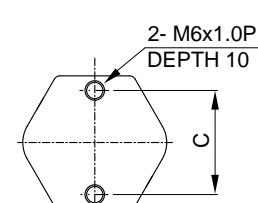
Dimensions


All Dimensions are in millimeters, except for the O.D size.

In case of the end connection for Hy-Lok tube fitting, dimensions shown with Hy-Lok nuts in finger-tight position, where applicable.


Round Handle

Pneumatic Actuator



Hy-Lok tube Fitting

Flange

Butt Weld

Bottom Mounting

End Connection		Ordering No.	Orifice	A	B ₁	B ₂	C	D	E	P	R	T	PCD
Type	Size												
Hy-Lok Tube Fitting	3/4"	BLFV1H-12	12.0	100.2	24.0	99.0	30.0	60.0	60.0	160.0	123.0	-	-
	1"	BLFV2H-16	15.0	126.7	28.0	101.5	35.0	70.0	100.0	210.0	129.5	-	-
	1"	BLFV3H-16	20.0	154.8	33.0	124.5	40.0	80.0	100.0	220.0	157.5	-	-
	1 1/4"	BLFV3H-20	20.0	173.8	33.0	124.5	40.0	80.0	100.0	220.0	157.5	-	-
Pipe Butt Weld	1/2"	BLFV1BW-15A	12.0	190.0	24.0	99.0	30.0	60.0	60.0	160.0	123.0	-	-
	3/4"	BLFV2BW-20A	15.0	200.0	28.0	101.5	35.0	70.0	100.0	210.0	129.5	-	-
	1"	BLFV3BW-25A	20.0	210.0	33.0	124.5	40.0	80.0	100.0	220.0	157.5	-	-
* FLANGE	1/2"	BLFV1RF10K-15A	12.0	108.0	24.0	99.0	30.0	60.0	60.0	160.0	123.0	95.0	70.0
	3/4"	BLFV2RF10K-20A	15.0	117.0	28.0	101.5	35.0	70.0	100.0	210.0	129.5	100.0	75.0
	1"	BLFV3RF10K-25A	20.0	127.0	33.0	124.5	40.0	80.0	100.0	220.0	157.5	125.0	90.0

* JIS flange is standard. ANSI flange as an option. For the ordering number of the ANSI flange, refer to the ordering information (Page 4).

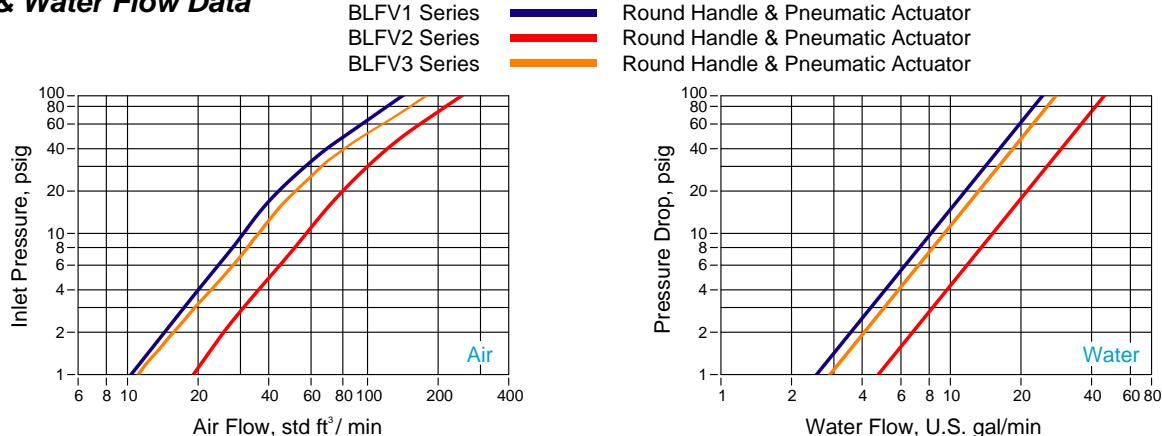
Maintenance Kits

Stem Tip Kits

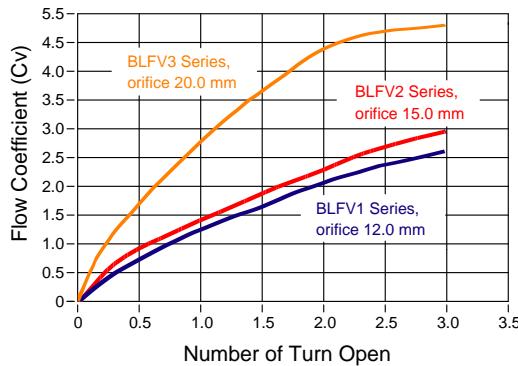
■ Ordering number is the following.

Series	Orifice	Ordering No.
BLFV1	12.0mm	BLFV1STA-PCTFE
BLFV2	15.0mm	BLFV2STA-PCTFE

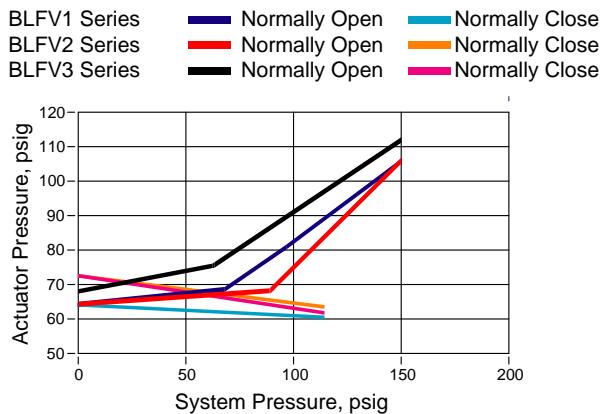
Bellows Welded Kits (Bellows, lower stem and weld ring)

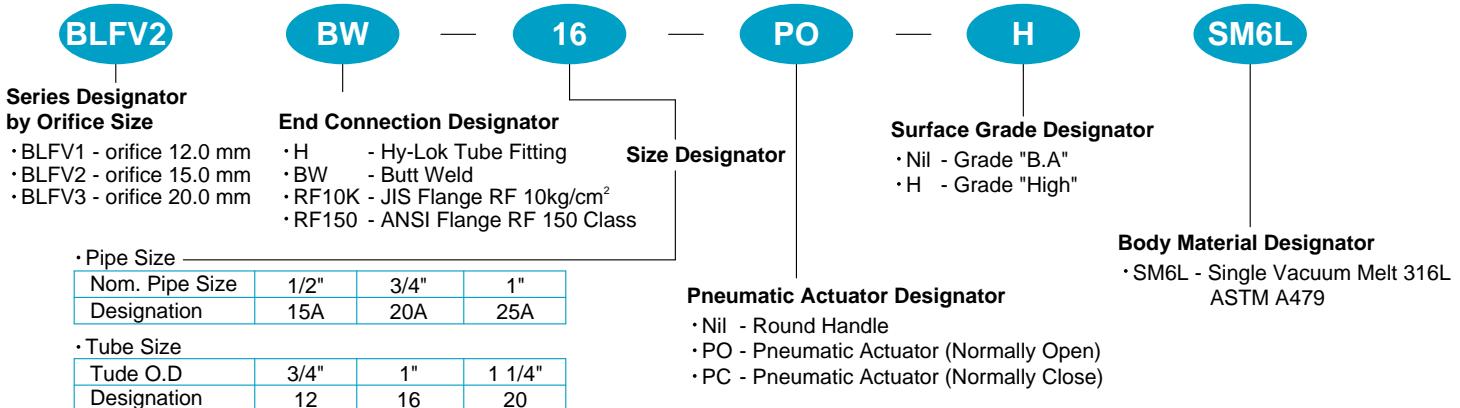

■ Ordering number is the following.

Series	Orifice	Ordering No.
BLFV1	12.0mm	BLFV1-BELS
BLFV2	15.0mm	BLFV2-BELS
* BLFV3	20.0mm	BLFV3-BELS


* Kits include bellows, lower stem, weld ring and stem tip.

Flow Data at 70°F (20°C)


Air & Water Flow Data


Round Handle Flow Coefficient at Turns Open

Pneumatic Actuator Performance

Ordering Information

SAFETY in VALVE SELECTION

Proper installation, material compatibility, operation and maintenance of these valves are the responsibility of the user. The total system design must be taken into consideration to ensure optimal performance and safety.