

Structural Calculations:

Turnlok Access System
Component Safe Working Loads

Client: VR Access Solutions Ltd.

Reference: #1462-C2

Date: April 2016

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW
Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

CONTENTS

Contents	1
Introduction	3
Standards	4
<i>Capacity of Standards for given tie patterns:</i>	4
<i>Capacity of Standards for given effective lengths:</i>	4
<i>Capacity of connection of Ledger/Transom to Standard:</i>	5
Spigot	5
Swivel Brace	6
<i>Capacity of Swivel Brace for given effective lengths:</i>	6
<i>Capacity of Swivel Brace for given bay arrangements lengths:</i>	7
Tube Ledgers	8
<i>2500mm Tube Ledger</i>	8
<i>1800mm Tube Ledger</i>	8
<i>1300mm Tube Ledger</i>	9
Intermediate Tube Transom	10
Omega Transoms	12
<i>Section Properties – 4.0mm Section</i>	12
<i>Section Classification</i>	12
<i>Moment Capacity</i>	12
<i>Shear Capacity</i>	13
<i>Omega Transom 4.0mm</i>	13
<i>Section Properties – 3.0mm Section</i>	14
<i>Section Classification</i>	14
<i>Moment Capacity</i>	14
<i>Shear Capacity</i>	15
<i>Omega Transom 3.0mm</i>	15
<i>Section Properties – HD Omega Section</i>	16
<i>Section Classification</i>	16
<i>Moment Capacity</i>	16

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW
Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

<i>Shear Capacity</i>	17
<i>Omega Transom HD Section</i>	17
Hop Up Brackets	18
<i>One Board Hop Up</i>	18
<i>Two and Three Board Hop Ups</i>	18
<i>Summary of Analysis</i>	19
Inside Board Transom	19
<i>One Board - Cantilever End</i>	19
<i>Backspan Connection</i>	20
<i>Two and Three Board – Simply Supported Inside Board Section</i>	21
<i>Summary of Analysis</i>	21
Appendix A – Analysis Output – Axial Capacity of Standards	
Appendix B – Analysis Output – Axial Capacity of Swivel Brace	
Appendix C – Analysis Output – Tube Ledgers	
Appendix D – Analysis Output – Omega Transom	
Appendix E – Analysis Output – Hop Up Brackets	
Appendix F – Analysis Output – Spigot	

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

INTRODUCTION

The following calculations derive the safe maximum working loads of selected components of the Turnlok façade scaffold system.

Safe working loads should be compared with unfactored applied loads. The values quoted are figures in isolation, relative to the stated component only – supporting components must be validated as being suitable to carry the forces applied to them.

Where a degree of end fixity is available due to a components connection method, this has been utilised in calculating the maximum applied loading unless noted otherwise.

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

STANDARDS

Capacity of Standards for given tie patterns:

Capacities taken from frame buckling assessments in calculation package reference #1462-C1

	TG20 Tie Pattern	L _e (mm)	N (kN)
TUBE SYSTEM	A	3595	9.78
	B	3364	11.06
	D	3595	9.78
	E	3424	10.70
OMEGA SYSTEM	A	3166	12.36
	B	2938	14.17
	D	3166	12.36
	E	2967	13.92

Capacity of Standards for given effective lengths:

Refer to spreadsheet output for analysis

L _e (mm)	1000	1500	2000	2500
N (kN)	72.5	44.0	27.9	18.9

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW
 Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

Capacity of connection of Ledger/Transom to Standard:

Capacities marked (*) taken from Oxford Brookes Report reference 407.

	Tube System	Omega System
Section Moment Capacity (kN.m)	1.78 ^(a)	1.70 ^(b)
Section Shear Capacity (kN)	45.5 ^(a)	32.02 ^(b)
Joint Moment Capacity (kN.m)		
(*) Ledger/Transom moving up	2.18	1.02
(*) Ledger/Transom moving down	2.05	1.39
Joint Rotational Stiffness (kN.m/rad)		
(*) Ledger/Transom moving up	74.26	86.97
(*) Ledger/Transom moving down	69.62	97.60

(a) – Section is as Standards, refer to relevant design output for derivation

(b) – Refer to analysis of Omega Transom section. Figures refer to 4.0mm section.

SPIGOT

Refer to analysis sheet:

Section	Moment Capacity (kN.m)	Tensile Capacity (kN)
Spigot	0.46	21.6

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

SWIVEL BRACE

Refer to spreadsheet output for analysis

Note: Capacity of swivel brace is limited to the known capacity of the connection, based on Oxford Brookes Report reference 407 in all cases except 2.0 x 2.5m bays where the capacity is limited by buckling at 9.2 kN.

Capacity of Swivel Brace for given effective lengths:

L_e (mm)	1000	1500	2000	2500
N (kN)	38.5	28.1	19.6	14.0
Known Connection Capacity (kN)	9.42	9.42	9.42	9.42

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

Capacity of Swivel Brace for given bay arrangements lengths:

Bay Geometry (m)	Strut Length (mm)	N (kN)	Connection Capacity (kN)
1.0 x 1.8	2059	18.8	9.42
1.0 x 2.5	2693	12.4	9.42
1.5 x 1.8	2343	15.5	9.42
1.5 x 2.5	2916	10.8	9.42
2.0 x 1.8	2691	12.4	9.42
2.0 x 2.5	3202	9.22	9.42

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW
Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

TUBE LEDGERS

From testing, ledger connections have a 2.05 kN.m moment capacity for downwards rotation with a rotational stiffness of 69.92 kN.m/rad. This stiffness is used in the analysis model, with the loads increased until either the support moment (2.05 kN.m) or the section moment (1.78 kN.m, from analysis of standards – see spreadsheet output) is reached.

2500mm Tube Ledger

From analysis:

Load Condition	Load	Total Load (kN)	Deflection (mm)
UDL	3.2 kN/m	8.0	25.4
CPL	4.4 kN	4.4	24.7
PL's at third points	2.8 kN	5.6	25.1

Max allowable deflection = $L/100 = 25\text{mm}$.

1800mm Tube Ledger

From analysis:

Load Condition	Load	Total Load (kN)	Deflection (mm)
UDL	7.5 kN/m	13.5	18.1
CPL	6.2 kN	4.7	14.4
PL's at third points	4.8 kN	9.6	18.1

Max allowable deflection = $L/100 = 18\text{mm}$, or 25mm absolute limit.

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

1300mm Tube Ledger

From analysis:

Load Condition	Load	Total Load (kN)	Deflection (mm)
UDL	14.9 kN/m	19.4	11.1
CPL	8.1 kN	8.1	7.9
PL's at third points	-	-	-

Max allowable deflection = $L/100 = 13\text{mm}$, or 25mm absolute limit.

INTERMEDIATE TUBE TRANSOM

Tube is 48.3 3.2 S460, therefore from design sheets (same section as Standard) safe moment capacity = 1.78 kN.m.

Tube $I_{yy} = 115856\text{mm}^4$. Members are simply supported therefore:

1300 Inter Transom

$$UDL_{\max} = \frac{8 \times M_{\text{safe}}}{L^2}$$

$$\frac{8 \times 1.78}{1.3^2} = 8.4 \text{ kN/m}$$

$I_{\text{req}} = 2.29 \times 8.40 \times 1.300^3 = 422614\text{mm}^4$ for I/360, 3.6mm.

$1300/100 = 13\text{mm}$ therefore L/100 is critical, not absolute 25mm limit.

Pro rata for L/100 = $422614 \times 100/360 = 117393\text{mm}^4$

Section $I_{yy} = 115856$.

Therefore accept deflection check.

Actual deflection = $3.6\text{mm} \times 422614/115856 = 13.1\text{mm}$ – allow.

1800 Inter Transom

$$UDL_{\max} = \frac{8 \times M_{\text{safe}}}{L^2}$$

$$\frac{8 \times 1.78}{1.8^2} = 4.4 \text{ kN/m}$$

$I_{\text{req}} = 2.29 \times 4.4 \times 1.800^3 = 587632\text{mm}^4$ for I/360, 5mm.

$1800/100 = 18\text{mm}$ therefore L/100 is critical, not absolute 25mm limit.

Section $I_{yy} = 115856$.

Actual deflection = $5.0\text{mm} \times 587632/115856 = 25.36\text{mm}$

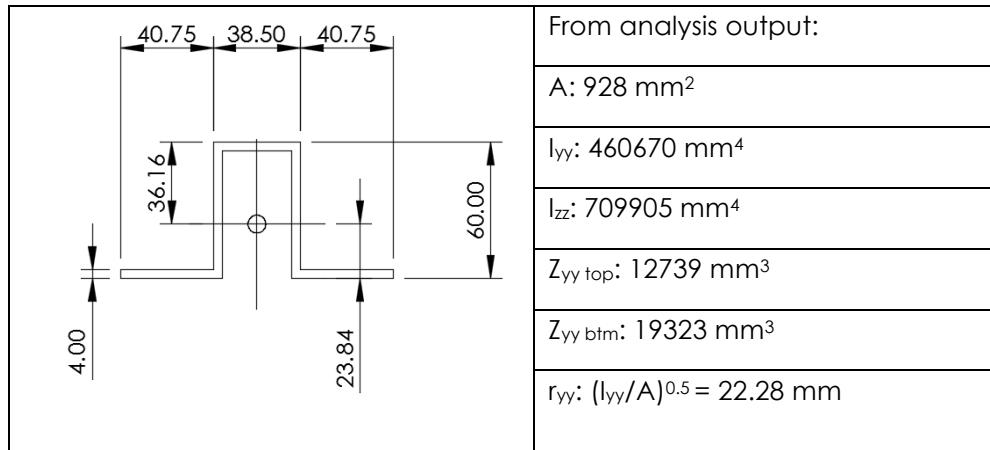
Therefore allowable load = $4.4 \times 18/25.36 = 3.12 \text{ kN/m}$

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462


Engineer : IH

Date : April 2016

	Span (mm)	Load	Total Load (kN)	Deflection (mm)	
	1300	8.4 kN/m	10.9	13.1	
	1800	3.1 kN/m	5.6	18.0	

OMEGA TRANSOMS

Section Properties – 4.0mm Section

Section Classification

Top section:	$c/t: (38.5 - 4.0 - 4.0) / 4.0 =$	7.62	(Internal element)
Web:	$d/t: (60 - 4.0 - 4.0) / 4.0 =$	13.0	(Internal element)
Flange:	$c/t: 40.75 / 4.0 =$	10.2	(Outstand element)

$$\varepsilon = \sqrt{235/220} = 1.03$$

7.62 < 33 ε : Class 1 Top section

13.0 < 72 ε : Class 1 Web

10.2 < 14 ε : Class 3 Flange (hogging moments only)

End fixity creates hogging at connection, but this capacity has been derived by physical testing.
 Therefore derive normal sag moment capacity as Class 3 Section.

Moment Capacity

$$M_{c,Rd} = \frac{W_{el,min} \times f_y}{\gamma_{M0}} \quad (12739 \times 220/1.0) \times 10^{-6} = 2.80 \text{ kN.m}$$

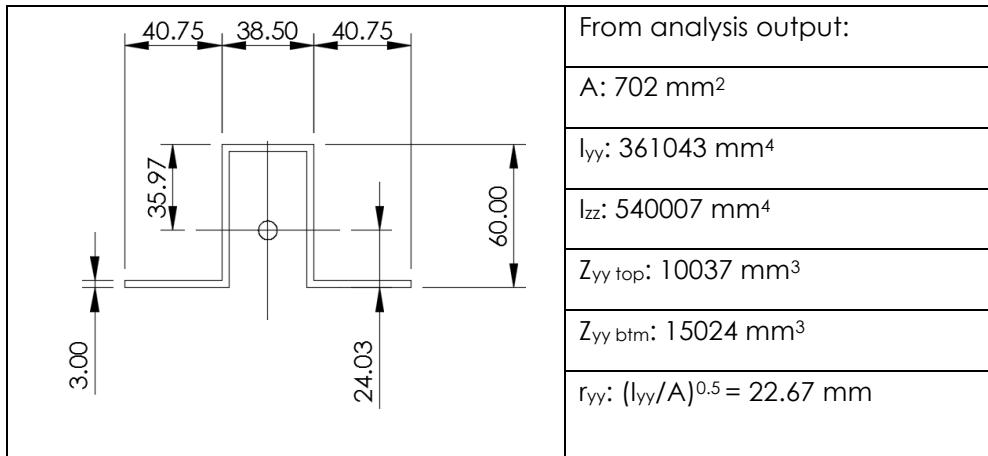
$$\text{Safe moment capacity: } 2.80 / (1.1 \times 1.5) = 1.70 \text{ kN.m}$$

Shear Capacity

$$V_{pl,Rd} = \frac{A_v \times \left(\frac{f_y}{\sqrt{3}} \right)}{\gamma_{M0}} \quad A_v = 2th \quad = 2 \times 52 \times 4.0 = 416 \text{mm}^2$$

$$= 416 \times (220/\sqrt{3}) / 1.0 = 52.84 \text{ kN}$$

$$\text{Safe shear capacity} = 52.84 / (1.1 \times 1.5) = 32.02 \text{ kN}$$


Omega Transom 4.0mm

Design method is as noted previously for the tube ledgers, using section moment capacity of 1.70 kN.m, a maximum support moment of 1.39 kN.m and a connection rotational stiffness of 97.60 kN.m/rad based on testing.

From analysis:

Span	Load	Total Load (kN)	Deflection (mm)
800	26.4 kN/m	21.1	1.1
1300	11.0 kN/m	14.3	2.9

Section Properties – 3.0mm Section

Section Classification

Top section: c/t: (38.5 – 3.0 – 3.0) / 3.0 = 10.8 (Internal element)

Web: d/t: (60 – 3.0 – 3.0) / 3.0 = 18.0 (Internal element)

Flange: c/t: 40.75 / 3.0 = 13.6 (Outstand element)

$$\varepsilon = \sqrt{235/220} = 1.03$$

10.8 < 33 ε : Class 1 Top section

18.2 < 72 ε : Class 1 Web

13.6 < 14 ε : Class 3 Flange (hogging moments only)

End fixity creates hogging at connection, but this capacity has been derived by physical testing.

Therefore derive normal sag moment capacity as Class 3 Section.

Moment Capacity

$$M_{c,Rd} = \frac{W_{el,min} \times f_y}{\gamma_{M0}} \quad (10037 \times 220/1.0) \times 10^{-6} = 2.21 \text{ kN.m}$$

Safe moment capacity: 2.21 / (1.1 x 1.5) = 1.34 kN.m

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

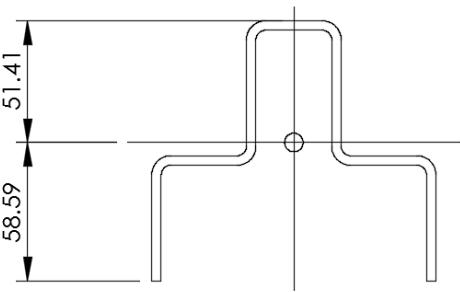
Date : April 2016

Shear Capacity

$$V_{pl,Rd} = \frac{A_v \times \left(\frac{f_y}{\sqrt{3}} \right)}{\gamma_{M0}} \quad A_v = 2th \quad = 2 \times 54 \times 3.0 = 324\text{mm}^2$$

$$= 324 \times (220/\sqrt{3}) / 1.0 = 41.15 \text{ kN}$$

$$\text{Safe shear capacity} = 41.15 / (1.1 \times 1.5) = 24.94 \text{ kN}$$


Omega Transom 3.0mm

Design method is as noted previous, using section moment capacity of 1.34 kN.m, a maximum support moment of 1.39 kN.m and a connection rotational stiffness of 97.60 kN.m/rad based on testing.

From analysis:

Span	Load	Total Load (kN)	Deflection (mm)
800	21.8 kN/m	17.4	1.1
1300	9.1 kN/m	11.8	2.9

Section Properties – HD Omega Section

	<p>From analysis output:</p> <p>A: 1266 mm²</p> <p>I_{yy}: 1174983 mm⁴</p> <p>I_{zz}: 1957919 mm⁴</p> <p>Z_{yy top}: 22855 mm³</p> <p>Z_{yy btm}: 20054 mm³</p> <p>r_{yy}: (I_{yy}/A)^{0.5} = 30.46 mm</p>
---	---

Section Classification

Top section:	c/t: (40 – 4.0 – 4.0) / 4.0 =	8.0	(Internal element)
Web:	d/t: (57 – 4.0 – 4.0) / 4.0 =	12.3	(Internal element)
Flange:	c/t: 40/ 4.0 =	10.0	(Internal element)
Downstand:	c/t: (53-4.0)/ 4.0 =	12.3	(Outstand element)

$$\varepsilon = \sqrt{235/220} = 1.03$$

8.0 < 33 ε : Class 1 Top section

12.3 < 72 ε : Class 1 Web

10.0 < 14 ε : Class 3 Flange (hogging moments only)

End fixity creates hogging at connection, but this capacity has been derived by physical testing.

Therefore derive normal sag moment capacity as Class 3 Section.

Moment Capacity

$$M_{c,Rd} = \frac{W_{el,min} \times f_y}{\gamma_{M0}} \quad (20054 \times 220/1.0) \times 10^{-6} = 4.42 \text{ kN.m}$$

Safe moment capacity: 4.42 / (1.1 x 1.5) = 2.67 kN.m

Shear Capacity

$$V_{pl,Rd} = \frac{A_v \times \left(\frac{f_y}{\sqrt{3}} \right)}{\gamma_{M0}} \quad A_v = 2th \quad = 2 \times 57 \times 4.0 = 456 \text{mm}^2$$

$$= 456 \times (220/\sqrt{3}) / 1.0 = 57.92 \text{ kN}$$

$$\text{Safe shear capacity} = 57.92 / (1.1 \times 1.5) = 35.1 \text{ kN}$$

Omega Transom HD Section

Design method is as noted previous, using section moment capacity of 2.67 kN.m, a maximum support moment of 1.39 kN.m and a connection rotational stiffness of 97.60 kN.m/rad based on testing.

From analysis:

Span	Load	Total Load (kN)	Deflection (mm)
2500	4.2 kN/m	10.6	6.6

HOP UP BRACKETS

One Board Hop Up

One board bracket is single cantilevering member only.

Support moment capacity = 2.05 kN.m (Tube) 1.39 kN.m (Omega)

Two and Three Board Hop Ups

Strut Tube

Use $L_e = 800\text{mm}$ to cover all cases – see analysis output.

Moment capacity = 1.1 kN.m

Axial Capacity = 57.4 kN

Top Member

Tube Section

Tension capacity = 94.8 kN (same section as standards – refer to relevant design section)

Moment capacity = 1.36 kN.m

Support moment capacity = 2.05 kN.m

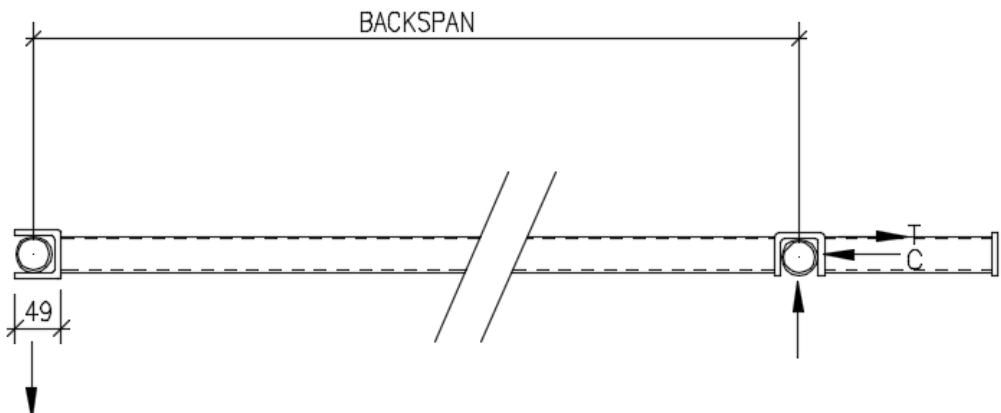
Omega Section

$A: 928\text{mm}^2$

$F_y: 220\text{N/mm}^2 = 928 \times 220 / (1.1 \times 1.5) = 123.7 \text{ kN}$

Tension capacity = 124 kN

Moment capacity = 1.70 (sag) kN.m (refer to analysis of Omega Transom)


Support moment capacity = 1.39 kN.m (from test results)

Refer to analysis output for assessments of one, two and three board hop ups.

Summary of Analysis

Hop Up	Load	Control
1 Board Omega	40 kN/m	Arbitrary Limit
2 Board Omega	17.0 kN/m	Top tube support
3 Board Omega	8.7 kN/m	Top tube support
1 Board Tube	40 kN/m	Arbitrary Limit
2 Board Tube	32.8 kN/m	Top tube support
3 Board Tube	16.6 kN/m	Top tube support

INSIDE BOARD TRANSOM

One Board - Cantilever End

Moment capacity at cantilever end will be limited by:

- i. Tube moment capacity
- ii. Plate tension (at top of tube into bracket)
- iii. Weld tension (at top of tube)

- i. Tube moment capacity = 1.78 kN.m (same section as standards – refer to relevant design section).
- ii. Saddle plate tension capacity = $235 \text{ N/mm}^2 \times 8t \times 125L \times 10^{-3} = 180 \text{ kN}$.
- iii. Weld modulus as $48.3 \times 1.0 = 1722 \text{ mm}^3$ x 1mm weld throat = 1722 mm^2 .
For 3mm weld $P_t = 0.47 \text{ kN/m}$. (S275, ref SCI P363 2013 edition pp. C-393)
Moment capacity = $1722 \times 470 = 809340 \text{ N.mm} = 0.81 \text{ kN.m}$
Safe moment capacity = $0.81 / (1.1 \times 1.5) = 0.49 \text{ kN.m}$ (to prevent cantilever tube tearing off plate)
Tension/Compression couple force = $0.49 / (0.048/2 + 0.012/2)$ (lever arm) = 16.3 kN therefore plate ok (180 kN capacity)

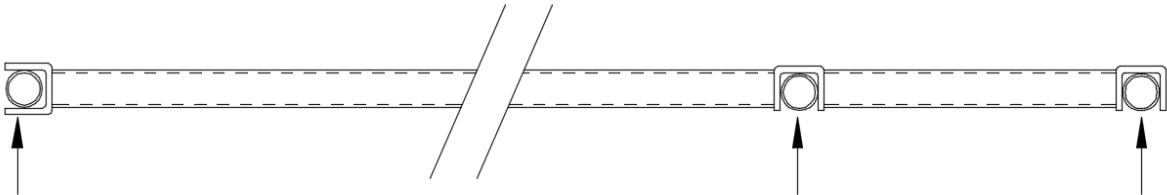
Therefore 0.49 kN.m moment capacity is available for the cantilever.

Backspan Connection

Bending of bottom plate at end of backspan

Max backspan connection force (i.e reaction from analysis) = 4.2 kN in backspan loaded only condition.

Induced moment = $4.2 \times 0.049/2 = 0.01 \text{ kN.m}$


Plate elastic modulus = $75 \times 8^2/6 = 800 \text{ mm}^3$

Moment capacity = $800 \times 180 \times 10^{-6} = 0.144 \text{ kN.m}$

Safe moment capacity = $0.144 / (1.1 \times 1.5) = 0.088$

Safe moment capacity greater than maximum induced moment therefore connection ok.

Two and Three Board – Simply Supported Inside Board Section

Maximum UDL for each bay is based on a simply supported tube, $M_{c,Rd} = 1.78 \text{ kN.m}$.

$$\text{Therefore } UDL_{\max} = \frac{8 \times M_{safe}}{L^2}$$

$$\frac{8 \times 1.78}{1.3^2} = 8.4 \text{ kN/m}$$

$$I_{req} = 2.29 \times 8.4 \times 1.300^3 = 422614 \text{ mm}^4 \text{ for I/360, 3.6mm.}$$

1300/100 = 13mm therefore L/100 is critical, not absolute 25mm limit.

Pro rata for I/100 = $422614 \times 100/360 = 117393 \text{ mm}^4$

Section $I_{yy} = 115856$.

Therefore accept deflection check.

Actual deflection = $3.6 \text{ mm} \times 422614/115856 = 13.1 \text{ mm}$ - allow

For +2 Inside span of 565mm, UDL = 44.6 kN/m (25.2 kN)

For +3 Inside span of 795mm, UDL = 22.5 kN/m (17.9 kN)

Summary of Analysis

Section	Backspan Load (kN/m)	Tip Load (kN/m)	Deflection both spans loaded (mm)	Critical Moment
+1 Inside Board Transom	6.4	12.5	7.9 Backspan. 4.0 tip uplift.	Cantilever connection for full UDL.
+2 Inside Board Transom	8.4	44.6	13.1 Main Deck.	Span sag.
+3 Inside Board Transom	8.4	22.5	13.1 Main Deck. 3.8 Inside Span	Span sag.

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

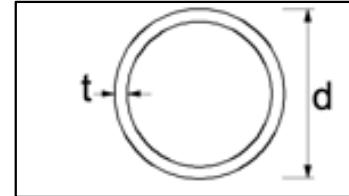
APPENDIX A – ANALYSIS OUTPUT – AXIAL CAPACITY OF STANDARDS

S-Mech Ltd.**Consulting Engineering**Suite 9, Railway House,
Railway Road, Chorley, PR6 0HW

Project#: 1462

Section: CHS

Material: Steel


Code: BS EN 1993-1

1.0 Global Partial Factors

Cross Section Partial Factor (γ_{M0}) 1
Material Partial Factor (γ_m) = 1.1
Load Partial Factor (γ_f) = 1.5

2.0 Section PropertiesSection: 48.3 x 3.2 CHS

Outside Dia.	48.3 mm
Inside Dia.	41.9 mm
Thickness	3.2 mm
P_y	450 N/mm ²
Area	453.4 mm ²
Tube I_{yy}	115856.5 mm ⁴
R_{yy}	15.99 mm
R_{zz}	15.99 mm
Z_{yy}	4797 mm ³
S_{xx}	6520 mm ³
Weight	0.035 kN/m

3.0 Section ClassificationModification Factor ϵ = $\sqrt{(235/f_y)}$

$$\epsilon = 0.722649$$

$$\epsilon^2 = 0.522222$$

$$d/t = 15.09375$$

Section Classification =

Class 1

S-Mech Ltd.**Consulting Engineering**Suite 9, Railway House,
Railway Road, Chorley, PR6 0HW

Project#: 1462

Section: CHS

Material: Steel

Code: BS EN 1993-1

4.0 Axial CapacityAxial Capacity Ignoring BucklingMax Capacity $N_{c,Rd} =$

$$\frac{A f_y}{Y_{M0}}$$

(For Class 1,2,3 Sections)

Max Capacity $N_{c,Rd} =$

204.03 kN

Permissible Axial Force =

123.65 kN

(Ignoring Buckling)

Buckling CapacityBuckling Capacity ($N_{b,Rd}$) =

$$\frac{X A f_y}{Y_{M1}}$$

(For Class 1,2,3 Sections)

Buckling Mode Reduction Factor

 $(X) =$ (NB. $X \leq 1$)

$$\frac{1}{\phi + \sqrt{(\phi^2 - \lambda^2)}}$$

$$\phi = 0.5 [1 + a (\lambda - 0.2) + \lambda^2]$$

$$\lambda = \frac{1 L_{cr}}{i \lambda_1}$$

$$\lambda_1 = 93.9 \varepsilon$$

$$\varepsilon = \sqrt{235/f_y}$$

$$a = 0.49 \quad \text{For cold rolled hollow sects}$$

$$i = \text{Rad of gyration on relevant axis}$$

Axial Buckling Capacities

Effective Length (mm)	1000	1500	2000	2500	0	0	0
λ	0.922	1.383	1.844	2.305	0.000	0.000	0.000
ϕ	1.102	1.746	2.603	3.672	0.451	0.451	0.451
X	0.586	0.356	0.225	0.153	1.109	1.109	1.109
$N_{b,Rd}$ (kN)	119.65	72.56	45.96	31.25	226.19	226.19	226.19
Permissible Axial Force (kN)	72.51	43.98	27.85	18.94	137.09	137.09	137.09

S-Mech Ltd.**Consulting Engineering**

Suite 9, Railway House,
Railway Road, Chorley, PR6 0HW

Project#: 1462

Section: CHS

Material: Steel

Code: BS EN 1993-1

5.0 Tensile Capacity

$$\text{Tensile Design Plastic Resistance } N_{pl,Rd} = \frac{A f_y}{Y_{MO}}$$

$$\text{Tensile Design Plastic Resistance } N_{pl,Rd} = 204.03 \text{ kN}$$

Permissible Tensile Force =	123.65 kN
-----------------------------	-----------

6.0 Section Bending Capacity

Section is not susceptible to lateral torsional buckling therefore:

$$\text{Section Bending Resistance } (M_{c,Rd}) = \frac{W_{pl} f_y}{Y_{MO}} \quad \text{Class 1/2 Sections}$$

$$\frac{W_{el,min} f_y}{Y_{MO}} \quad \text{Class 3 Sections}$$

$$\text{Section Bending Resistance } (M_{c,Rd}) = 2.93 \text{ kN.m} \quad \text{Class 1/2}$$

$$\text{Section Bending Resistance } (M_{c,Rd}) = 2.16 \text{ kN.m} \quad \text{Class 3}$$

Permissible Moment =	1.778 kN.m	Class 1
----------------------	------------	---------

7.0 Section Shear Capacity

$$\text{Section Shear Resistance } (V_{pl,Rd}) = \frac{A_v(f_y/\sqrt{3})}{Y_{MO}}$$

$$\text{For CHS Section Shear Area } (A_v) = 2A/\pi$$

$$\text{Shear Area } (A_v) = 289 \text{ mm}^2$$

$$\text{Section Shear Resistance } (V_{pl,Rd}) = 74.99 \text{ kN}$$

Permissible Shear Resistance =	45.45 kN
--------------------------------	----------

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

APPENDIX B – ANALYSIS OUTPUT – AXIAL CAPACITY OF SWIVEL

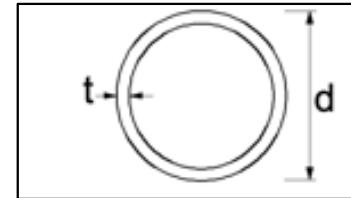
BRACE

S-Mech Ltd.**Consulting Engineering**Suite 9, Railway House,
Railway Road, Chorley, PR6 0HW

Project#: 1462

Section: CHS

Material: Steel


Code: BS EN 1993-1

1.0 Global Partial Factors

Cross Section Partial Factor (γ_{M0})	1
Material Partial Factor (γ_m) =	1.1
Load Partial Factor (γ_f) =	1.5

2.0 Section PropertiesSection: 48.3 x 2.5 CHS

Outside Dia.	48.3 mm
Inside Dia.	43.3 mm
Thickness	2.5 mm
P_y	235 N/mm ²
Area	359.7 mm ²
Tube I_{yy}	94599.4 mm ⁴
R_{yy}	16.22 mm
R_{zz}	16.22 mm
Z_{yy}	3917 mm ³
S_{xx}	5249 mm ³
Weight	0.028 kN/m

3.0 Section ClassificationModification Factor ϵ = $\sqrt{(235/f_y)}$

$$\epsilon = 1$$

$$\epsilon^2 = 1$$

$$d/t = 19.32$$

Section Classification = Class 1

S-Mech Ltd.**Consulting Engineering**Suite 9, Railway House,
Railway Road, Chorley, PR6 0HW

Project#: 1462

Section: CHS

Material: Steel

Code: BS EN 1993-1

4.0 Axial CapacityAxial Capacity Ignoring BucklingMax Capacity $N_{c,Rd} =$

$$\frac{A f_y}{Y_{M0}}$$

(For Class 1,2,3 Sections)

Max Capacity $N_{c,Rd} =$

84.53 kN

Permissible Axial Force =

51.23 kN

(Ignoring Buckling)

Buckling CapacityBuckling Capacity ($N_{b,Rd} =$)

$$\frac{X A f_y}{Y_{M1}}$$

(For Class 1,2,3 Sections)

Buckling Mode Reduction Factor

 $(X) =$ (NB. $X \leq 1$)

$$\frac{1}{\phi + \sqrt{(\phi^2 - \lambda^2)}}$$

$$\phi = 0.5 [1 + \alpha (\lambda - 0.2) + \lambda^2]$$

$$\lambda = \frac{1 L_{cr}}{i \lambda_1}$$

$$\lambda_1 = 93.9 \varepsilon$$

$$\varepsilon = \sqrt{235/f_y}$$

$$\alpha = 0.49 \quad \text{For cold rolled hollow sects}$$

$$i = \text{Rad of gyration on relevant axis}$$

Axial Buckling Capacities

Effective Length (mm)	2059	2693	2343	2916	2691	3202	2500
λ	1.352	1.768	1.539	1.915	1.767	2.103	1.642
ϕ	1.696	2.448	2.012	2.754	2.445	3.177	2.201
X	0.368	0.241	0.302	0.211	0.242	0.180	0.273
$N_{b,Rd}$ (kN)	31.07	20.41	25.56	17.86	20.44	15.21	23.05
Permissible Axial Force (kN)	18.83	12.37	15.49	10.83	12.39	9.22	13.97

5.0 Tensile Capacity

Tensile Design Plastic Resistance $N_{pl,Rd} = \frac{A_f_y}{Y_{MO}}$

Tensile Design Plastic Resistance $N_{pl,Rd} = 84.53 \text{ kN}$

Permissible Tensile Force = 51.23 kN

6.0 Section Bending Capacity

Section is not susceptible to lateral torsional buckling therefore:

Section Bending Resistance ($M_{c,Rd}$) = $\frac{W_{pl} f_y}{Y_{MO}}$ Class 1/2 Sections

$\frac{W_{el,min} f_y}{Y_{MO}}$ Class 3 Sections

Section Bending Resistance ($M_{c,Rd}$) = 1.23 kN.m Class 1/2

Section Bending Resistance ($M_{c,Rd}$) = 0.92 kN.m Class 3

Permissible Moment = 0.748 kN.m Class 1

7.0 Section Shear Capacity

Section Shear Resistance ($V_{pl,Rd}$) = $\frac{A_v(f_y/\sqrt{3})}{Y_{MO}}$

For CHS Section Shear Area (A_v) = $2A/\pi$

Shear Area (A_v) = 229 mm²

Section Shear Resistance ($V_{pl,Rd}$) = 31.07 kN

Permissible Shear Resistance = 18.83 kN

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

APPENDIX C – ANALYSIS OUTPUT – TUBE LEDGERS

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 1300 Tube Ledger /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

MasterFrame Data File

Loading Cases and Load Combination

Load Group Labels

Load Group UT	Unity Load Factor (All Cases)
Load Group H1	Live Load
Load Group H3	Live Load

Load Case 001 : Live udl

Load Combination	+ 1.00 UT + 1.00 H3
------------------	---------------------

Load Case 002 : Central Point Load

Load Combination	+ 1.00 UT + 1.00 H1
------------------	---------------------

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	1.300	0.000	0.000

Member Properties

Member 1

M	48.3x3.2 CHS 3.56 [S 355]	I _x 11.59E-8	I _y 11.59E-8
A 4.53E-4			J 23.17E-8
E 205.0E6		G 78.85E6	

Member Loading

Member Self Weight Density Load Included in Load Group D1, defined by Modulus of Elasticity

E kN/mm ²	Density kN/m ³
>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Member 1

H3 UDLY -014.900	(kN/m)
H1 PY -008.100 0.650	(kN, m)

Nodal Loading and Support Conditions

NODES 1-2

UT Rs 1 1 1 0 0 0 (Pinned)

NODES 1-2

UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0069.620

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 1300 Tube Ledger /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Nodal Deflections Serviceability (001 : Live udl)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY
1	0.00	0.00	-1.13	0.00	2	0.00	0.00	1.13	0.00

Nodal Deflections Serviceability (002 : Central Point Load)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY
1	0.00	0.00	-0.71	0.00	2	0.00	0.00	0.71	0.00

Member Forces (001 : Live udl)

Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	9.685 -9.685	-1.376 -1.376	1.772 @ 0.650	11.084 @ 0.650

Member Forces (002 : Central Point Load)

Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	4.050 -4.050	-0.863 -0.863	1.769 @ 0.650	7.928 @ 0.650

Support Reactions Serviceability (001 : Live udl)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)
1 Total	0.000 0.000	9.685 19.370	1.376 0.000	2	0.000	9.685	-1.376

Support Reactions Serviceability (002 : Central Point Load)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)
1 Total	0.000 0.000	4.050 8.100	0.863 0.000	2	0.000	4.050	-0.863

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 1800 Tube Ledger /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

MasterFrame Data File

Loading Cases and Load Combination

Load Group Labels

Load Group UT	Unity Load Factor (All Cases)
Load Group H1	Live Load
Load Group H2	Live Load
Load Group H3	Live Load

Load Case 001 : Live udl

Load Combination + 1.00 UT + 1.00 H3

Load Case 002 : Central Point Load

Load Combination + 1.00 UT + 1.00 H1

Load Case 003 : Third Point Loads

Load Combination + 1.00 UT + 1.00 H2

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	1.800	0.000	0.000

Member Properties

Member 1

M	48.3x3.2 CHS 3.56 [S 355]
A 4.53E-4	I _x 11.59E-8
E 205.0E6	I _y 11.59E-8
	J 23.17E-8
	G 78.85E6

Member Loading

Member Self Weight Density Load Included in Load Group D1, defined by Modulus of Elasticity

E kN/mm² Density kN/m³

>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Member 1

H3 UDLY -007.500	(kN/m)
H1 PY -006.200 0.900	(kN, m)
H2 PY -004.800 1.200	(kN, m)
H2 PY -004.800 0.600	(kN, m)

Nodal Loading and Support Conditions

NODES 1-2

UT Rs 1 1 1 0 0 0 (Pinned)

NODES 1-2

UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0069.920

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 1800 Tube Ledger /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Nodal Deflections Serviceability (001 : Live udl)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	0.00	-1.20	0.00	2	0.00	0.00	1.20	0.00

Nodal Deflections Serviceability (002 : Central Point Load)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	0.00	-0.83	0.00	2	0.00	0.00	0.83	0.00

Nodal Deflections Serviceability (003 : Third Point Loads)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	0.00	-1.14	0.00	2	0.00	0.00	1.14	0.00

Member Forces (001 : Live udl)

Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	6.750 -6.750	-1.470 -1.470	1.568 @ 0.900	18.083 @ 0.900

Member Forces (002 : Central Point Load)

Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	3.100 -3.100	-1.013 -1.013	1.777 @ 0.900	14.440 @ 0.900

Member Forces (003 : Third Point Loads)

Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	4.800 -4.800	-1.394 -1.394	1.486 @ 0.600	18.058 @ 0.900

Support Reactions Serviceability (001 : Live udl)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)
1 Total	0.000 0.000	6.750 13.500	1.470 0.000	2	0.000	6.750	-1.470

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 1800 Tube Ledger /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Support Reactions Serviceability (002 : Central Point Load)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx➔ (kN)	Ry⬆ (kN)	Mz↗ (kN.m)		Rx➔ (kN)	Ry⬆ (kN)	Mz↗ (kN.m)
1 Total	0.000 0.000	3.100 6.200	1.013 0.000	2	0.000	3.100	-1.013

Support Reactions Serviceability (003 : Third Point Loads)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx➔ (kN)	Ry⬆ (kN)	Mz↗ (kN.m)		Rx➔ (kN)	Ry⬆ (kN)	Mz↗ (kN.m)
1 Total	0.000 0.000	4.800 9.600	1.394 0.000	2	0.000	4.800	-1.394

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 2500 Tube Ledger /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

MasterFrame Data File

Loading Cases and Load Combination

Load Group Labels

Load Group UT	Unity Load Factor (All Cases)
Load Group H1	Live Load
Load Group H2	Live Load
Load Group H3	Live Load

Load Case 001 : Live udl

Load Combination + 1.00 UT + 1.00 H3

Load Case 002 : Central Point Load

Load Combination + 1.00 UT + 1.00 H1

Load Case 003 : Third Point Loads

Load Combination + 1.00 UT + 1.00 H2

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	2.500	0.000	0.000

Member Properties

Member 1

M	48.3x3.2 CHS 3.56 [S 355]
A 4.53E-4	I _x 11.59E-8
E 205.0E6	I _y 11.59E-8
	J 23.17E-8
	G 78.85E6

Member Loading

Member Self Weight Density Load Included in Load Group D1, defined by Modulus of Elasticity

E kN/mm² Density kN/m³

>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Member 1

H3 UDLY -003.200	(kN/m)
H1 PY -004.400 1.250	(kN, m)
H2 PY -002.800 1.666	(kN, m)
H2 PY -002.800 0.833	(kN, m)

Nodal Loading and Support Conditions

NODES 1-2

UT Rs 1 1 1 0 0 0 (Pinned)

NODES 1-2

UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0069.920

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 2500 Tube Ledger /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Nodal Deflections Serviceability (001 : Live udl)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	0.00	-1.07	0.00	2	0.00	0.00	1.07	0.00

Nodal Deflections Serviceability (002 : Central Point Load)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	0.00	-0.89	0.00	2	0.00	0.00	0.89	0.00

Nodal Deflections Serviceability (003 : Third Point Loads)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	0.00	-1.00	0.00	2	0.00	0.00	1.00	0.00

Member Forces (001 : Live udl)

Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	4.000 -4.000	-1.310 -1.310	1.190 1.250	25.403 1.250

Member Forces (002 : Central Point Load)

Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	2.200 -2.200	-1.081 -1.081	1.669 1.250	24.728 1.250

Member Forces (003 : Third Point Loads)

Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	2.801 -2.799	-1.223 -1.223	1.111 1.406	25.140 1.250

Support Reactions Serviceability (001 : Live udl)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)
1 Total	0.000 0.000	4.000 8.000	1.310 0.000	2	0.000	4.000	-1.310

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 2500 Tube Ledger /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Support Reactions Serviceability (002 : Central Point Load)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx➔ (kN)	Ry⬆ (kN)	Mz↗ (kN.m)		Rx➔ (kN)	Ry⬆ (kN)	Mz↗ (kN.m)
1 Total	0.000 0.000	2.200 4.400	1.081 0.000	2	0.000	2.200	-1.081

Support Reactions Serviceability (003 : Third Point Loads)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx➔ (kN)	Ry⬆ (kN)	Mz↗ (kN.m)		Rx➔ (kN)	Ry⬆ (kN)	Mz↗ (kN.m)
1 Total	0.000 0.000	2.801 5.600	1.223 0.001	2	0.000	2.799	-1.223

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

APPENDIX D – ANALYSIS OUTPUT – OMEGA TRANSOM

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 800 OT 3mm /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

MasterFrame Data File

Loading Cases and Load Combination

Load Group Labels

Load Group UT
 Load Group L1

Unity Load Factor (All Cases)
 Live Load

Load Case 001 : Max UDL

Load Combination

+ 1.00 UT + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	0.800	0.000	0.000

Member Properties

Member 1

M	3.0 OT []	E 205E6	G 80E6
A 7.02E-4	Ix 36.1E-8	Iy 54.0E-8	J 72.2E-8

Member Loading

Member Self Weight Density Load Included in Load Group D0, defined by Modulus of Elasticity

E kN/mm² Density kN/m³

>= 200.00 78.00

>= 20.00 24.00

>= 2.00 10.00

Member 1

L1 UDLY -021.780 (kN/m)

Nodal Loading and Support Conditions

NODES 1-2

UT Rs 1 1 1 0 0 0 (Pinned)

NODES 1-2

UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0097.600

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk	12385	Job Ref : 1462
		Sheet : 800 OT 3mm /
		Made by : IH
		Date : 19 May 2016 / Ver. 2015.14
		Checked : IH
		Approved :

Nodal Deflections Serviceability (001 : Max UDL)									
Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	0.00	-0.24	0.00	2	0.00	0.00	0.24	0.00

Member Forces (001 : Max UDL)						
Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	8.712 -8.712	-0.401 -0.401	1.341 @ 0.400	1.136 @ 0.400

Support Reactions Serviceability (001 : Max UDL)							
Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)
1 Total	0.000 0.000	8.712 17.424	0.401 0.000	2	0.000	8.712	-0.401

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 1300 OT 3mm /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

MasterFrame Data File

Loading Cases and Load Combination

Load Group Labels

Load Group UT
 Load Group L1

Unity Load Factor (All Cases)
 Live Load

Load Case 001 : Max UDL

Load Combination

+ 1.00 UT + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	1.300	0.000	0.000

Member Properties

Member 1

M	3.0 OT []	E 205E6
A 7.02E-4	Ix 36.1E-8	Iy 54.0E-8
		J 72.2E-8

Member Loading

Member Self Weight Density Load Included in Load Group D0, defined by Modulus of Elasticity

E kN/mm² Density kN/m³

>= 200.00 78.00

>= 20.00 24.00

>= 2.00 10.00

Member 1

L1 UDLY -009.100 (kN/m)

Nodal Loading and Support Conditions

NODES 1-2

UT Rs 1 1 1 0 0 0 (Pinned)

NODES 1-2

UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0097.600

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk					12385	Job Ref : 1462 Sheet : 1300 OT 3mm / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	--	--	--	--	-------	--

Nodal Deflections Serviceability (001 : Max UDL)									
Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY
1	0.00	0.00	-0.35	0.00	2	0.00	0.00	0.35	0.00

Member Forces (001 : Max UDL)						
Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	5.915 -5.915	-0.592 -0.592	1.331 @ 0.650	2.884 @ 0.650

Support Reactions Serviceability (001 : Max UDL)							
Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)
1 Total	0.000 0.000	5.915 11.830	0.592 0.000	2	0.000	5.915	-0.592

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 800 OT 4mm /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

MasterFrame Data File

Loading Cases and Load Combination

Load Group Labels

Load Group UT
 Load Group L1

Unity Load Factor (All Cases)
 Live Load

Load Case 001 : Max UDL

Load Combination

+ 1.00 UT + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	0.800	0.000	0.000

Member Properties

Member 1

M	4.0 OT []	E 205E6
A 9.28E-4	I _x 46.07E-8	I _y 70.99E-8
		J 92.14E-8

Member Loading

Member Self Weight Density Load Included in Load Group D0, defined by Modulus of Elasticity

E kN/mm² Density kN/m³

>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Member 1

L1 UDLY -026.400 (kN/m)

Nodal Loading and Support Conditions

NODES 1-2

UT RS 1 1 1 0 0 0 (Pinned)

NODES 1-2

UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0097.600

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk					12385	Job Ref : 1462 Sheet : 800 OT 4mm / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	--	--	--	--	-------	---

Nodal Deflections Serviceability (001 : Max UDL)									
Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY
1	0.00	0.00	-0.24	0.00	2	0.00	0.00	0.24	0.00

Member Forces (001 : Max UDL)							
Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)	
1	1 2	0.000C 0.000C	10.560 -10.560	-0.412 -0.412	1.700 @ 0.400	1.142 @ 0.400	

Support Reactions Serviceability (001 : Max UDL)							
Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)
1 Total	0.000 0.000	10.560 21.120	0.412 0.000	2	0.000	10.560	-0.412

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : 1300 OT 4mm /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

MasterFrame Data File

Loading Cases and Load Combination

Load Group Labels

Load Group UT
 Load Group L1

Unity Load Factor (All Cases)
 Live Load

Load Case 001 : Max UDL

Load Combination

+ 1.00 UT + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	1.300	0.000	0.000

Member Properties

Member 1

M	4.0 OT []	E 205E6
A 9.28E-4	I _x 46.07E-8	I _y 70.99E-8
		J 92.14E-8

Member Loading

Member Self Weight Density Load Included in Load Group D0, defined by Modulus of Elasticity

E kN/mm² Density kN/m³

>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Member 1

L1 UDLY -011.000 (kN/m)

Nodal Loading and Support Conditions

NODES 1-2

UT RS 1 1 1 0 0 0 (Pinned)

NODES 1-2

UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0097.600

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk					12385	Job Ref : 1462 Sheet : 1300 OT 4mm / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	--	--	--	--	-------	--

Nodal Deflections Serviceability (001 : Max UDL)									
Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	0.00	-0.37	0.00	2	0.00	0.00	0.37	0.00

Member Forces (001 : Max UDL)							
Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)	
1	1 2	0.000C 0.000C	7.150 -7.150	-0.622 -0.622	1.701 @ 0.650	2.938 @ 0.650	

Support Reactions Serviceability (001 : Max UDL)							
Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)
1 Total	0.000 0.000	7.150 14.300	0.622 0.000	2	0.000	7.150	-0.622

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk	12385	Job Ref : 1462 Sheet : 2500 HD OT / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	-------	---

MasterFrame Data File Loading Cases and Load Combination

Load Group Labels

Load Group UT	Unity Load Factor (All Cases)
Load Group D1	Dead Load
Load Group L1	Live Load

Load Case 001 : Max UDL

Load Combination + 1.00 UT + 1.00 D1 + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	2.500	0.000	0.000

Member Properties

Member 1

M	TL	HDOT	[]	E	205E6	G	80E6
A	12.66E-4		Ix	117.5E-8		Iy	195.8E-8	J	235.0E-8

Member Loading

Member Self Weight Density Load Included in Load Group D1, defined by Modulus of Elasticity

Material Strength Density Data Included in Load Case

≥ 200.00 77.01

≥ 20.00 24.00

ember 1

Nodal Loading and Support Conditions

NODES 1-2

UT

HT Services 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk					12385	Job Ref : 1462 Sheet : 2500 HD OT / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	--	--	--	--	-------	---

Nodal Deflections Serviceability (001 : Max UDL)									
Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY
1	0.00	0.00	-0.44	0.00	2	0.00	0.00	0.44	0.00

Member Forces (001 : Max UDL)							
Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)	
1	1 2	0.000C 0.000C	5.372 -5.372	-0.753 -0.753	2.605 1.250	@ @	6.632 1.250

Support Reactions Serviceability (001 : Max UDL)							
Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)
1 Total	0.000 0.000	5.372 10.744	0.753 0.000	2	0.000	5.372	-0.753

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

APPENDIX E – ANALYSIS OUTPUT – HOP UP BRACKETS

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
Sheet : THU 1 Bd SWL /
Made by : IH
Date : 19 May 2016 / Ver. 2015.14
Checked : IH
Approved :

Frame Geometry - (Full Frame) - Front View**Not to Scale**

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk	12385	Job Ref : 1462 Sheet : THU 1 Bd SWL / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	-------	---

MasterFrame Data File Loading Cases and Load Combination

Load Group Labels

Load Group UT	Unity Load Factor (All Cases)
Load Group D1	Dead Load
Load Group L1	Live Load

Load Case 001 : Max SWL

Load Combination + 1.00 UT + 1.00 D1 + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.280	0.000	0.000	2	0.000	0.000	0.000

Member Properties

Member 1

M	48.3x3.2 CHS 3.56 [S 355]
A 4.53E-4	I _x 11.59E-8
E 205.0E6	I _y 11.59E-8
	J 23.17E-8
	G 78.85E6

Member Loading

Member Self Weight Density Load Included in Load Group D0, defined by Modulus of Elasticity

E kN/mm ²	Density kN/m ³
>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Member 1

L1 UDLY -040.000 (kN/m)

Nodal Loading and Support Conditions

NODE 2	UT Ls +0000.000 -0000.000 +0000.000 +0000.000 +0000.000 +0000.000
NODE 2	UT Rs 1 1 1 1 1 1 (Fixed)
NODE 2	UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0069.620

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk					12385	Job Ref : 1462 Sheet : THU 1 Bd SWL / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	--	--	--	--	-------	---

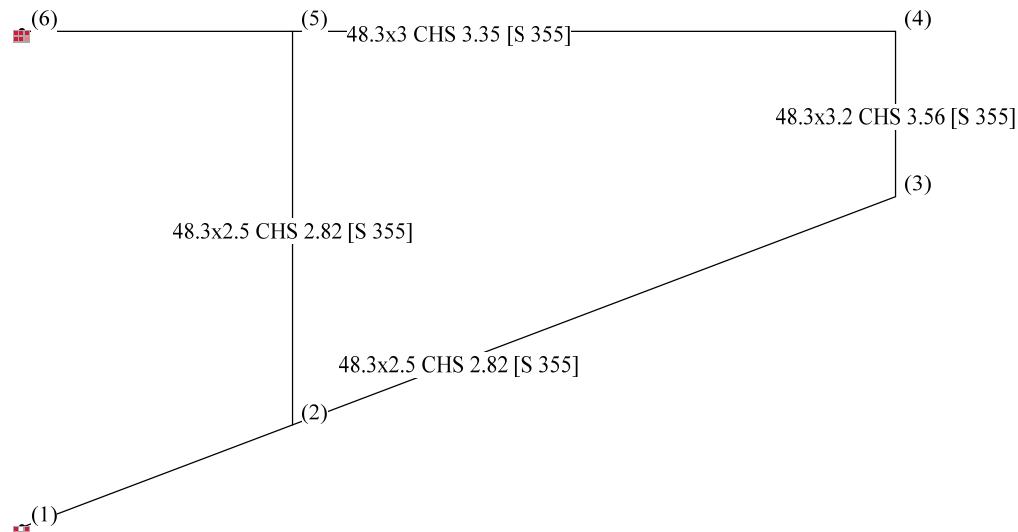
Nodal Deflections Serviceability (001 : Max SWL)									
Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY
1	0.00	-1.29	-0.35	1.29	2	0.00	0.00	0.00	0.00

Member Forces (001 : Max SWL)						
Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	0.000 11.200	0.000 1.568		1.293 0.000

Support Reactions Serviceability (001 : Max SWL)							
Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)
2	0.000	11.200	1.568	Total	0.000	11.200	1.568

S-Mech Ltd

Suite 9


Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
Sheet : THU 2 Bd SWL /
Made by : IH
Date : 19 May 2016 / Ver. 2015.14
Checked : IH
Approved :

Frame Geometry - (Full Frame) - Front View**Not to Scale**

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk	12385	Job Ref : 1462 Sheet : THU 2 Bd SWL / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
---	-------	---

MasterFrame Data File Loading Cases and Load Combination

Load Group Labels

Load Group UT	Unity Load Factor (All Cases)
Load Group D1	Dead Load
Load Group L1	Live Load

Load Case 001 : Max SWL

Load Combination + 1.00 UT + 1.00 D1 + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	0.175	0.062	0.000
3	0.565	0.200	0.000	4	0.565	0.300	0.000
5	0.175	0.300	0.000	6	0.000	0.300	0.000

Member Properties

Members 1-2 and 6

M	48.3x2.5 CHS 2.82 [S 355]		
A 3.6E-4	I _x 9.46E-8	I _y 9.46E-8	J 18.92E-8
E 205.0E6	G 78.85E6		

Members 3-4

M	48.3x3 CHS 3.35 [S 355]		
A 4.27E-4	I _x 11.0E-8	I _y 11.0E-8	J 22.0E-8
E 205.0E6	G 78.85E6		

Member 5

M	48.3x3.2 CHS 3.56 [S 355]		
A 4.53E-4	I _x 11.59E-8	I _y 11.59E-8	J 23.17E-8
E 205.0E6	G 78.85E6		

Member Loading

Member Self Weight Density Load Included in Load Group D0, defined by Modulus of Elasticity

E kN/mm ²	Density kN/m ³
>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Members 3-4

L1 UDLY -032.800 (kN/m)

Nodal Loading and Support Conditions

NODE 6	UT Ls +0000.000 -0000.000 +0000.000 +0000.000 +0000.000 +0000.000
NODE 6	UT Rs 1 1 1 1 1 1 (Fixed)
NODE 1	UT Rs 1 0 1 0 0 0 (Horizontally Restraint)
NODE 6	UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0069.620

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : THU 2 Bd SWL /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Nodal Deflections Serviceability (001 : Max SWL)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	-1.22	0.22	1.22	2	-0.20	-0.73	0.04	0.76
3	0.08	-1.64	-0.03	1.64	4	0.05	-1.65	0.04	1.65
5	0.02	-0.72	-0.27	0.72	6	0.00	0.00	0.00	0.00

Member Forces (001 : Max SWL)

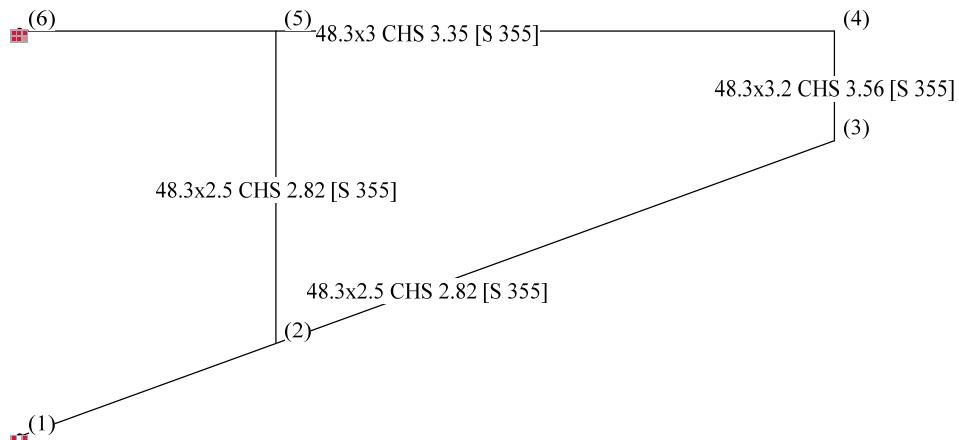
Mem ber No.	Node End1	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
	End2					
1	1	10.006C	-3.545	0.000	-0.727	0.684
	2	10.006C	-3.545	-0.658	@ 0.186	@ 0.227
2	2	7.900C	3.225	-0.727	-0.727	0.684
	3	7.900C	3.225	0.607	@ 0.186	@ 0.227
3	4	6.372T	-5.676	-0.030	-0.690	0.450
	5	6.372T	7.116	0.251	@ 0.390	@ 0.211
4	5	10.615T	12.792	-0.690	-0.690	0.450
	6	10.615T	18.532	2.051	@ 0.390	@ 0.211
5	3	5.676C	-6.372	0.607		0.016
	4	5.676C	-6.372	-0.030		@ 0.042
6	2	5.676T	-4.243	0.069		0.165
	5	5.676T	-4.243	-0.941		@ 0.140

Support Reactions Serviceability (001 : Max SWL)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)
1 Total	10.615 0.000	0.000 18.532	0.000 2.051	6	-10.615	18.532	2.051

S-Mech Ltd

Suite 9


Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
Sheet : THU 3 Bd SWL /
Made by : IH
Date : 19 May 2016 / Ver. 2015.14
Checked : IH
Approved :

Frame Geometry - (Full Frame) - Front View**Not to Scale**

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk	12385	Job Ref : 1462 Sheet : THU 3 Bd SWL / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	-------	---

MasterFrame Data File Loading Cases and Load Combination

Load Group Labels

Load Group UT	Unity Load Factor (All Cases)
Load Group D1	Dead Load
Load Group L1	Live Load

Load Case 001 : Max SWL

Load Combination + 1.00 UT + 1.00 D1 + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.000	0.000	0.000	2	0.250	0.085	0.000
3	0.795	0.270	0.000	4	0.795	0.370	0.000
5	0.250	0.370	0.000	6	0.000	0.370	0.000

Member Properties

Members 1-2 and 6

M	48.3x2.5 CHS 2.82 [S 355]		
A 3.6E-4	I _x 9.46E-8	I _y 9.46E-8	J 18.92E-8
E 205.0E6	G 78.85E6		

Members 3-4

M	48.3x3 CHS 3.35 [S 355]		
A 4.27E-4	I _x 11.0E-8	I _y 11.0E-8	J 22.0E-8
E 205.0E6	G 78.85E6		

Member 5

M	48.3x3.2 CHS 3.56 [S 355]		
A 4.53E-4	I _x 11.59E-8	I _y 11.59E-8	J 23.17E-8
E 205.0E6	G 78.85E6		

Member Loading

Member Self Weight Density Load Included in Load Group D0, defined by Modulus of Elasticity

E kN/mm ²	Density kN/m ³
>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Members 3-4

L1 UDLY -016.600 (kN/m)

Nodal Loading and Support Conditions

NODE 6	UT Ls +0000.000 -0000.000 +0000.000 +0000.000 +0000.000 +0000.000
NODE 6	UT Rs 1 1 1 1 1 1 (Fixed)
NODE 1	UT Rs 1 0 1 0 0 0 (Horizontally Restraint)
NODE 6	UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0069.620

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : THU 3 Bd SWL /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Nodal Deflections Serviceability (001 : Max SWL)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	-2.52	0.35	2.52	2	-0.40	-1.43	0.06	1.49
3	0.09	-3.05	-0.03	3.05	4	0.06	-3.05	0.05	3.05
5	0.02	-1.42	-0.36	1.42	6	0.00	0.00	0.00	0.00

Member Forces (001 : Max SWL)

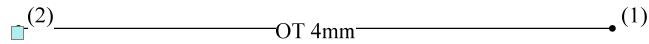
Mem ber No.	Node End1	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
	End2					
1	1	8.213C	-2.792	0.000	-0.730	1.361
	2	8.213C	-2.792	-0.737	@ 0.261	@ 0.316
2	2	6.583C	2.240	-0.696	-0.730	1.361
	3	6.583C	2.240	0.593	@ 0.261	@ 0.316
3	4	5.513T	-4.238	0.042	-0.744	0.888
	5	5.513T	4.809	0.198	@ 0.545	@ 0.305
4	5	8.675T	9.047	-0.744	-0.744	0.888
	6	8.675T	13.197	2.036	@ 0.545	@ 0.305
5	3	4.238C	-5.513	0.593		0.017
	4	4.238C	-5.513	0.042		@ 0.043
6	2	4.238T	-3.161	-0.041		0.263
	5	4.238T	-3.161	-0.942		@ 0.162

Support Reactions Serviceability (001 : Max SWL)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)
1 Total	8.675 0.000	0.000 13.197	0.000 2.036	6	-8.675	13.197	2.036

S-Mech Ltd

Suite 9


Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
Sheet : OHU 1 Bd SWL /
Made by : IH
Date : 19 May 2016 / Ver. 2015.14
Checked : IH
Approved :

Frame Geometry - (Full Frame) - Front View**Not to Scale**

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk	12385	Job Ref : 1462 Sheet : OHU 1 Bd SWL / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	-------	---

MasterFrame Data File Loading Cases and Load Combinations

Load Group Labels

Load Group UT	Unity Load Factor (All Cases)
Load Group D1	Dead Load
Load Group L1	Live Load

Load Case 001 : Max SWL

Load Combination + 1.00 UT + 1.00 D1 + 1.00 L1

The Nodal Co-ordinates

Node	X (m)	Y (m)	Z (m)	Node	X (m)	Y (m)	Z (m)
1	0.280	0.000	0.000	2	0.000	0.000	0.000

Member Properties

Member 1

M OT 4mm [] E 205E6 G 80E6
 A 9.28E-4 Ix 46.07E-8 Iy 70.99E-8 J 92.14E-8

Member Loading

Member Self Weight Density Load Included in Load Group D0, defined by Modulus of Elasticity

Material or Component	Weighted Density Load Included in Load Computation
E kN/mm ²	Density kN/m ³
>= 200.00	78.00
>= 20.00	24.00
>= 2.00	10.00

Member 1
L1 UDLY -040.000

Nodal Loading and Support Conditions

NODE 2

UT Ls +0000.000 -0000.000 +0000.000 +0000.000 +0000.000 +0000.000

NODE 2

UT Rs 1 1 1 1 1 1 (Fixed)

NODE 2

UT Springs 0000.000 0000.000 0000.000 0000.000 0000.000 0000.000

S-Mech Ltd Suite 9 Railway House, Railway Road Chorley, Lancs, PR6 0HW Tel: 01257 367580 Email: info@s-mech.co.uk					12385	Job Ref : 1462 Sheet : OHU 1 Bd SWL / Made by : IH Date : 19 May 2016 / Ver. 2015.14 Checked : IH Approved :
--	--	--	--	--	-------	---

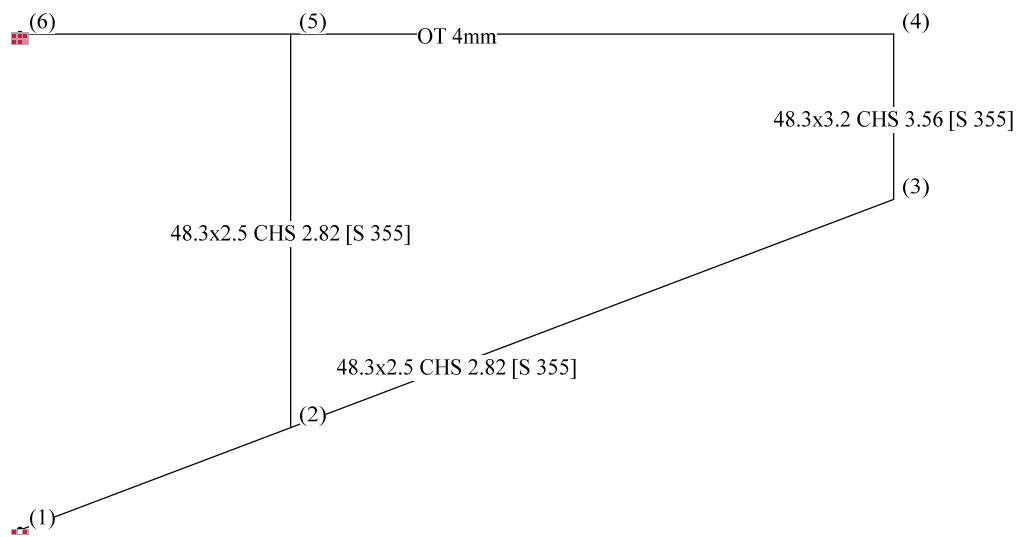
Nodal Deflections Serviceability (001 : Max SWL)									
Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \curvearrowright$	δXY
1	0.00	-0.33	-0.09	0.33	2	0.00	0.00	0.00	0.00

Member Forces (001 : Max SWL)						
Mem ber No.	Node End1 End2	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
1	1 2	0.000C 0.000C	0.000 11.200	0.000 1.568		@ 0.325 0.000

Support Reactions Serviceability (001 : Max SWL)							
Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \curvearrowright (kN.m)
2	0.000	11.200	1.568	Total	0.000	11.200	1.568

S-Mech Ltd

Suite 9


Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
Sheet : OHU 2 Bd SWL /
Made by : IH
Date : 19 May 2016 / Ver. 2015.14
Checked : IH
Approved :

Frame Geometry - (Full Frame) - Front View**Not to Scale**

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : OHU 2 Bd SWL /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Nodal Deflections Serviceability (001 : Max SWL)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	-0.33	0.09	0.33	2	-0.08	-0.15	0.01	0.17
3	0.00	-0.45	-0.01	0.45	4	0.01	-0.46	-0.01	0.46
5	0.00	-0.14	-0.07	0.14	6	0.00	0.00	0.00	0.00

Member Forces (001 : Max SWL)

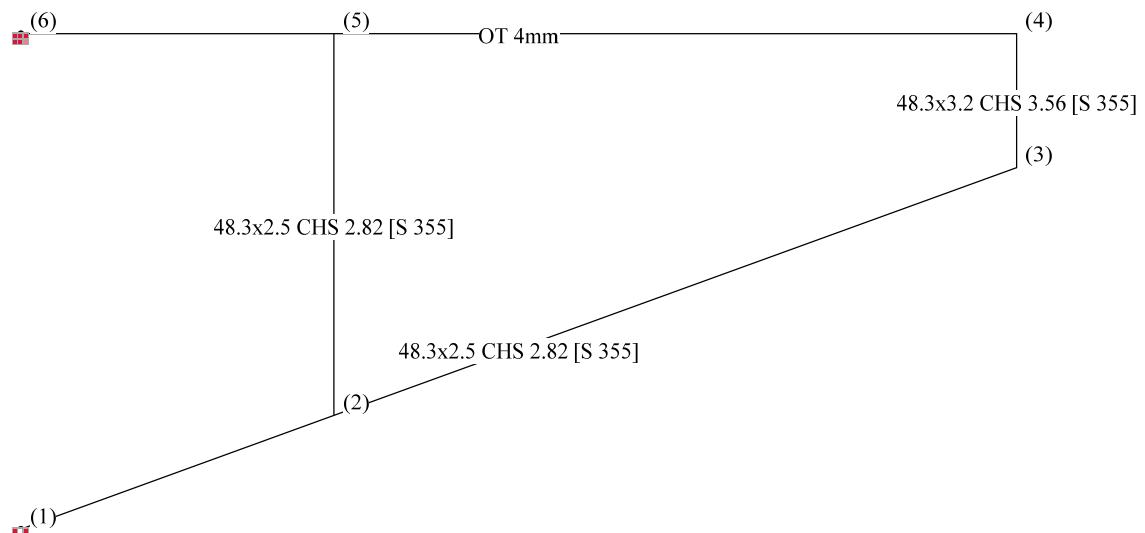
Mem ber No.	Node End1	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
	End2					
1	1	4.165C	-1.476	0.000	-0.271	0.242
	2	4.165C	-1.476	-0.274	@ 0.184	@ 0.223
2	2	4.421C	1.028	-0.232	-0.271	0.242
	3	4.421C	1.028	0.193	@ 0.184	@ 0.223
3	4	3.825T	-2.443	-0.190	-0.365	0.059
	5	3.825T	4.187	0.150	@ 0.137	@ 0.179
4	5	4.419T	6.630	-0.033	-0.365	0.059
	6	4.419T	9.605	1.388	@ 0.137	@ 0.179
5	3	2.443C	-3.825	0.193		0.000
	4	2.443C	-3.825	-0.190		@ 0.000
6	2	2.443T	-0.594	-0.042		0.042
	5	2.443T	-0.594	-0.183		@ 0.131

Support Reactions Serviceability (001 : Max SWL)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)
1 Total	4.419 0.000	0.000 9.605	0.000 1.388	6	-4.419	9.605	1.388

S-Mech Ltd

Suite 9


Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
Sheet : OHU 3 Bd SWL /
Made by : IH
Date : 19 May 2016 / Ver. 2015.14
Checked : IH
Approved :

Frame Geometry - (Full Frame) - Front View**Not to Scale**

S-Mech Ltd

Suite 9

Railway House, Railway Road

Chorley, Lancs, PR6 0HW

Tel: 01257 367580 Email: info@s-mech.co.uk

12385

Job Ref : 1462
 Sheet : OHU 3 Bd SWL /
 Made by : IH
 Date : 19 May 2016 / Ver. 2015.14
 Checked : IH
 Approved :

Nodal Deflections Serviceability (001 : Max SWL)

Node	Nodal Def. (mm and Degrees)				Node	Nodal Def. (mm and Degrees)			
	$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY		$\delta X \rightarrow$	$\delta Y \uparrow$	$\Phi Z \nearrow$	δXY
1	0.00	-0.71	0.14	0.71	2	-0.16	-0.29	0.02	0.33
3	0.00	-0.85	-0.02	0.85	4	0.01	-0.85	-0.01	0.85
5	0.00	-0.28	-0.09	0.28	6	0.00	0.00	0.00	0.00

Member Forces (001 : Max SWL)

Mem ber No.	Node End1	Axial Force (kN)	Shear Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)
	End2					
1	1	3.487C	-1.186	0.000	-0.310	0.501
	2	3.487C	-1.186	-0.313	@ 0.261	@ 0.304
2	2	3.830C	0.710	-0.224	-0.310	0.501
	3	3.830C	0.710	0.185	@ 0.261	@ 0.304
3	4	3.399T	-1.904	-0.155	-0.363	0.124
	5	3.399T	2.838	0.100	@ 0.218	@ 0.262
4	5	3.683T	4.742	-0.071	-0.363	0.124
	6	3.683T	6.917	1.387	@ 0.218	@ 0.262
5	3	1.904C	-3.399	0.185		0.000
	4	1.904C	-3.399	-0.155		@ 0.000
6	2	1.904T	-0.284	-0.089		0.068
	5	1.904T	-0.284	-0.170		@ 0.151

Support Reactions Serviceability (001 : Max SWL)

Node	Support Reactions (kN and kN.m)			Node	Support Reactions (kN and kN.m)		
	Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)		Rx \rightarrow (kN)	Ry \uparrow (kN)	Mz \nearrow (kN.m)
1 Total	3.683 0.000	0.000 6.917	0.000 1.387	6	-3.683	6.917	1.387

S-Mech Consulting Structural Engineering

Suite 9, Railway House, Railway Road, Chorley, Lancashire, PR6 0HW

Tel 01257 367580 email info@s-mech.co.uk

Project Ref : #1462

Engineer : IH

Date : April 2016

APPENDIX F – ANALYSIS OUTPUT – SPIGOT

Spigot Capacities

Section : 32.8 x 32.8 x 3.0 SHS, Q235 Steel

$$d_o := 32.8 \text{ mm} \quad t := 3.0 \text{ mm} \quad d_i := d_o - 2 \cdot t = 26.8 \text{ mm}$$

$$f_y := 235 \frac{\text{N}}{\text{mm}^2} \quad f_u := 360 \frac{\text{N}}{\text{mm}^2}$$

Bolt Hole Diameter $a := 11 \text{ mm}$

Bolt Diameter $b := 10 \text{ mm}$

$$\gamma_{M0} := 1.0$$

$$\gamma_{M2} := 1.1 \quad \text{Revised from standard value of 1.25 down to 1.1 to suit requirements of BS EN 12811 with respect to steel design}$$

Moment Capacity

$$W_{el} := \frac{(d_o^4 - d_i^4)}{6 \cdot d_o} = 3260 \text{ mm}^3$$

$$M_{crd} := W_{el} \cdot f_y = 0.766 \text{ kN} \cdot \text{m}$$

$$M_{safe} := \frac{M_{crd}}{1.1 \cdot 1.5} = 0.464 \text{ kN} \cdot \text{m}$$

Tension Capacity

Net Area: $A_{net} := d_o^2 - d_i^2 - 2 \cdot a \cdot t = 291.6 \text{ mm}^2$

Gross Area: $A_{gross} := d_o^2 - d_i^2 = 357.6 \text{ mm}^2$

$$N_{plRd} := \frac{A_{gross} \cdot f_y}{\gamma_{M0}} = 84.036 \text{ kN}$$

$$N_{uRd} := \frac{0.9 \cdot A_{net} \cdot f_u}{\gamma_{M2}} = 85.889 \text{ kN}$$

$$T_{safe} := \frac{N_{uRd}}{1.5} = 57.26 \text{ kN}$$

N_{uRd} already allows for material safety factor

Bolt Bearing

$$K_1 := 1.5$$

To IStructE EC3 Manual

$$\alpha_b := 1.0$$

$$F_{bRd} := \frac{K_1 \cdot \alpha_b \cdot a \cdot t \cdot f_u}{\gamma_{M2}} = 16.2 \text{ kN} \quad \text{per bearing surface}$$

$$F_{bsafe} := \frac{F_{bRd}}{1.5} = 10.8 \text{ kN}$$

per bearing surface

F_{bRd} already allows for material safety factor