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Executive Summary

This document, BeGREEN D4.2 deliverable, presents the development status and the initial validation of the
BeGREEN Intelligence Plane and the methods assisted by proposed Artificial Intelligence (Al) and Machine
Learning (ML) to enhance the energy efficiency of the Radio Access Network (RAN) and Edge domains. This
work builds on the concepts established in BeGREEN D4.1 [1], by introducing and refining the architecture,
mechanisms, and use cases designed to reduce energy consumption without impairing network performance.
The deliverable also reports an initial evaluation of the proposed solutions.

BeGREEN D4.2 is structured in two main chapters. The first one deals with the architecture of the BeGREEN
Intelligence Plane, a cross-domain framework designed to integrate Al/ML processes within the O-RAN
architecture with the objective of enhancing the decision-making process of rApps and xApps. As the main
novelty, the Intelligence Plane incorporates the Al Engine, which hosts ML models and associated services,
offloading them from the RAN Intelligent Controllers (RICs). By decoupling the Al/ML services from the O-
RAN control loops, the BeGREEN Intelligence Plane offers a modular and reusable framework that allows for
independent model development and deployment. Additionally, the deliverable discusses extensions to
allow the integration of Edge and Core domains, and of RAN technologies which are currently beyond the
scope of traditional O-RAN implementations like Relays, Reconfigurable Intelligent Surfaces (RIS), and
Integrated Sensing and Communication (ISAC). Finally, it is examined how to manage and mitigate conflicts
across the RICs between contradictory optimisation policies.

The second main chapter is dedicated to the evaluation of Al/ML-based solutions that enhance energy
efficiency, including the Intelligence Plane itself. First, it presents dimensionality reduction techniques to
minimize data inputs for ML models without impacting the model accuracy. This approach reduces data
processing overhead and improves the energy efficiency of ML models. The compute resource allocation in
virtualized RAN (VRAN) scenarios is also analysed, and Reinforcement Learning (RL) algorithms to dynamically
decide on resource allocation according to network load and power consumption patterns are proposed.
Another proposed strategy is the carrier on/off switching technique, which uses ML to predict traffic patterns
and switch off unnecessary 5G carriers during low-demand periods, significantly reducing energy usage by
offloading traffic to 4G carriers. The deliverable also details Al/ML approaches controlling fixed and UE-based
relays to ensure that network resources are utilized more effectively, leading to both improved coverage and
reduced energy consumption. In particular, the proposed mechanisms address coverage hole detection
(CHD), fixed relay placement, candidate Relay UE (RUE) identification and dynamic relay activation and
deactivation. Regarding the Edge domain, two main uses cases and methods are considered. The first one
proposes a dynamic allocation of the compute resources dedicated to the User Plane Function (UPF)
according to the forecasted traffic demand. The second one proposes a Bayesian online learning algorithm
addressing the joint orchestration of vVRANs and Edge Al services, aiming at minimizing overall power
consumption while meeting the service's performance constraints.

Initial evaluations of these Al/ML-assisted solutions show promising results in terms of energy savings and
performance optimization in both the RAN and Edge domain. The deliverable includes use case studies,
technology characterization and experimental validations demonstrating how these algorithms can achieve
substantial energy reductions in both the RAN and Edge domains. In the case of the Intelligence Plane, the
reported validation assesses the baseline architecture and operations, focusing on the Al Engine and the
Non-Real-Time RIC. The final evaluation of the Intelligence Plane and the Al/ML-assisted mechanisms will be
reported in the upcoming BeGREEN D4.3.
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1 Introduction

Despite being more energy efficient than predecessor generations, the transition to 5G has raised the energy
consumption of the network due to the features required to support new advanced services. In this context,
reducing energy consumption has emerged as a key challenge for network operators, both in terms of
environmental impact and operational costs. As highlighted by ITU in the IMT-2030 report on future trends
[2], one of the main goals of 6G will be the reduction of network-wide energy consumption. To address this
problem, the O-RAN Alliance is defining control mechanisms that allow managing energy saving features in
a multi-vendor O-RAN environments [3]. However, specific energy saving algorithms, are left open for vendor
differentiation. Additionally, the integration of Al/ML* will be key to learn from historical data, proactively
adapt to evolving network dynamics, and drive automated control decisions.

To address these challenges, BeGREEN proposes an Intelligence Plane, which works as a cross-domain
management entity, integrating control and monitoring functions across RAN, Core and Edge domains, and
fostering the creation of advanced ML models. The proposed framework incorporates an Al Engine to the O-
RAN architecture. This component decouples the provision of Al/ML services, including the serving of ML
models, from the Service Management and Orchestration (SMO) and the RAN Intelligent Controllers (RICs)
elements. This allows independent ML model and control algorithms development, facilitating the reusability
of ML models like predictors by different rApps and xApps. In addition, new interfaces and control
components are incorporated to the O-RAN architecture to manage and monitor Edge and Core domains,
and to support RAN technologies currently not being considered by the specification: Relays and Relay User
Equipment (RUE), Reconfigurable Intelligent Surface (RIS) and Integrated Sensing and Communication (ISAC).
The Intelligence Plane also includes specific BeGREEN metrics, the Energy Score and the Energy Rating, which
are used to determine the absolute and relative performance of the network entities in terms of energy
efficiency.

Once incorporated to the O-RAN architecture, these proposed components and technologies can be
exploited by novel Al/ML-driven control mechanisms to reduce the energy consumption of the RAN and Edge
domains. In the RAN, the proposed energy-saving optimisations focus on optimal compute resource
allocation of virtual RANs (VRANSs), dynamic 5G carrier deactivation and traffic offloading, and the utilisation
of Relay and RIS technologies to enhance energy efficiency. In the Edge, resource allocation strategies are
also applied to optimise the energy consumption of User Plane Function (UPF) and of Edge Al services.
Additionally, methods to reduce the data dimensionality of ML models are also discussed, aiming at
minimizing energy consumption without impacting model accuracy.

BeGREEN D4.2 describes the progress on the development of the proposed solutions and presents their
initial validation. The deliverable is structured is as follows:

e Chapter 2 describes the architecture of the Intelligence Plane. Building on the foundations
established in BeGREEN D4.1 [1], the introduced components and interfaces are further detailed and
developed towards specifying the final BeGREEN architecture that will enable the proposed solutions
to enhance energy efficiency at the RAN and Edge domains. Three main entities are considered:

o Al Engine: The key element of the Intelligence Plane, providing the framework to implement
and expose Al/ML services. This chapter describes how it is implemented using available
open-source frameworks and integrated with the RICs through the Al Engine Assist (AlA)
rApps and xApps. Additionally, the current definition and implementation of the Energy
Score and Energy Rating functions is detailed.

1 Al and ML terms denote related and overlapping concepts. In fact, ML can be seen as a subset of Al. In this document, the term
Al/ML will be used to denote Al and/or ML techniques.
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o SMO and non-RT RIC: Developments are focused on the integration with the Al Engine to
expose ML models to rApps implementing optimisation control-loops and on the integration
with the near-RT RIC through energy saving-based Al policies. To this end, the data models
of the AIA rApps and of the Al policies are detailed.

o Near-RT RIC: Two xApps are presented. On the one hand, the Energy Saving xApp manages
the operation status of the cells according to the energy saving policies. On the other hand,
the Handover Manager xApp optimizes the handover process allowing to apply load
balancing strategies. The join operation of both xApps will be required when applying energy
saving strategies such cell on/off switching. Additionally, in this section a novel conflict
mitigation and management strategy among contradictory policies and RAN control actions
is discussed.

Once introduced its main architecture, Chapter 2 presents the integration of the Intelligence Plane
and the RAN and Edge domains. First, it briefly presents their relationship with O-RAN O-gNB and O-
Cloud, focusing on the application of O-RAN aligned energy saving strategies. Secondly, it describes
the designed approach to integrate RAN technologies currently not being considered by O-RAN, like
RIS, ISAC and Relays. In this case, the principal aim is to define the interfaces, components and
procedures required to apply the energy saving strategies exploiting these technologies being
considered in BeGREEN. Finally, Chapter 2 finalizes describing the approach to integrate the Edge
domain to enable the monitoring and control of edge resources.

e Chapter 3 presents the initial evaluation of Al/ML-assisted procedures being developed in BeGREEN,
including the Intelligence Plane itself. In relation to the methods introduced in BeGREEN D4.1 [1],
this deliverable refines and extends the description of the solutions and of their application
scenarios?. Then, results related to performed evaluations are presented. The chapter is structured
as follows:

o Dimensionality reduction: This method proposes a solution to systematically reduce the
input data required to train and retrain models such as predictors. The objective is to
enhance the energy efficiency of the models without impacting the required model accuracy.
Initial results are based on a real dataset provided by a Mobile Network Operator (MNO).

o Compute resource allocation in VRAN: Addresses the problem of compute resource
allocation in virtualized RAN under shared computing infrastructure. According to an initial
experimental characterization, proposes Reinforcement Learning (RL) based solution which
adapts the compute resources allocated to virtual Base Stations (vBSs) according to network
demands, avoiding over- and under-provisioning issues. The method is evaluated
experimentally in a testbed.

o AI/ML and data-driven strategies for energy-efficient 5G carrier on/off switching: This
solution considers scenarios with capacity and coverage cells, as is the case of current 5G
Non-Stand Alone (NSA) deployments, in order to propose on/off switching and traffic
offloading strategies. According to the real data from a MNO, available energy saving
opportunities are studied, evaluating how different heuristics and ML-driven strategies
could be applied to match them.

o Al/ML-based algorithmic solutions for relay-enhanced RAN control: Proposes the utilisation
of Relays and RUEs to enhance energy efficiency of areas with high traffic demands and poor
propagation conditions, avoiding the installation of new cells or the increase of cell
transmission power. Several Al/ML-based methods are defined to provide a complete

2 This deliverable does not include an evaluation of the RIS integration into O-RAN, which will be reported in D4.3.
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solution, including CHD, fixed relay placement decision, identification of candidate RUs, and
relay activation and deactivation. Initial evaluation is based on simulations according to a
realistic scenario in a University Campus.

o Traffic-aware compute resource management to enhance UPF energy efficiency: This
method deals with the dynamic management of the compute resources allocated to a UPF
according to the traffic demand. According to the experimental characterization of a high-
performance open-source UPF implementation, energy efficient strategies are proposed
and evaluated. Proactive management of the strategies will be provided by ML models
forecasting the traffic demand.

o Joint orchestration of vRANs and Edge Al services: Addresses the problem of optimizing the
allocation of resources to VRANs and Edge Al services, considering the intertwined
relationships and trade-offs between RAN and Edge configurations and their impact on
performance. To solve it, and according to the results from an experimental characterization,
an online learning algorithm formulated as a contextual bandit is proposed.

o Intelligence Plane validation: Presents the initial evaluation of the Intelligence Plane,
focusing on the integration of the Al Engine and Non-RT RIC components through AIA rApps.
The validation is based on the demonstration performed at the 2024 EUCNC & 6G Summit.

e Finally, Chapter 4 presents the summary and conclusions, highlighting the key findings reported in
the validation section and outlining the main directions for future work, which will be detailed in the
next deliverable, BeGREEN D4.3.
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2 BeGREEN Intelligence Plane

This chapter is devoted to the description of the BeGREEN Intelligence Plane architecture. As was introduced
in BeGREEN D4.1 [1], the Intelligence Plane aims at providing the required Al/ML control and management
plane functions to the O-RAN architecture [4] with the main objective of enhancing the ability to perform
RAN optimisations. In the case of BeGREEN, these capabilities are exploited to reduce the overall energy
consumption of the RAN and Edge infrastructure. To this end, in addition to the Service Management and
Orchestration (SMO), the Non-Real-Time RAN Intelligent Controller (Non-RT RIC) and the Near-Real-Time
Intelligent Controller (Near-RT RIC), the Intelligence Plane incorporates the Al Engine, which provides a
serverless execution environment hosting the Al/ML models, offering inference and training services to the
rApps/xApps by following a loosely coupled approach. To enhance reusability and efficiency, the Al Engine
can also host functions, such as the BeGREEN Energy Score and Energy Rating [1][5]. These functions may be
used to orchestrate specific rApps or xApps, or to configure them according to the areas or components that
require optimisations.

The chapter is structured as follows. Section 2.1 describes in detail the architecture of the BeGREEN
Intelligence Plane, including the Al Engine and the RICs, and extending the description provided in BeGREEN
D4.1[1]. According to this architecture, Sections 2.2 and 2.3, respectively introduce the required integrations
with RAN and Edge domains to provide the energy saving optimisations being proposed within the scope of
the BeGREEN project. Hence, the main focus of this section is to analyse the alignment with the O-RAN
specification, and, when necessary, to specify the novel components, interfaces or procedures required to
develop BeGREEN proposed optimisations and to integrate them into the Intelligence Plane framework.

BeGREEN focuses on energy-efficient optimizations within the RAN and Edge infrastructure domains. Hence,
the Intelligence Plane works as a cross-domain management entity, integrating control and monitoring
functions across RAN and Edge domains. This integration facilitates the creation of advanced ML models that
can be utilized by analytics consumers, like rApps and xApps, to implement energy-efficient automated
control loops. Therefore, the architecture of the BeGREEN Intelligence Plane, as depicted in Figure 2-1,
consists of the O-RAN SMO and the RICs, which are extended with additional control and management
capabilities, plus the Al Engine, which hosts the ML models and implements the required Al/ML services.
Figure 2-1 also illustrates how the Intelligence Plane interacts with the RAN and Edge domains, what in some
cases requires of new/extended interfaces, as will be detailed in the following paragraphs.

Regarding the RAN domain, as introduced in Section 2.2, in addition to the energy-efficient management of
O-Cloud and O-gNB components through O-RAN compliant components and interfaces, the Intelligence
Plane aims to incorporate control over RIS, fixed relays, or Relay User Equipment (UEs with relaying
capabilities), which are currently beyond the scope of O-RAN. Thus, BeGREEN proposes new interfaces or
extensions termed O1+ and E2+ for monitoring and controlling these elements and integrating them within
the Intelligence Plane at the non-RT and near-RT domains, respectively. Additional information on these
interfaces is provided in the sections devoted to these solutions.

As depicted in Figure 2-1, the SMO incorporates Edge control functions in addition to other common O-RAN
functions, such as O1 and O2 terminations. As introduced in Section 2.3, this allows the definition of
optimisation strategies targeting energy efficiency, which can exploit the individual or joint management of
RAN and Edge resources and the ML models available in the Al Engine. As shown in Figure 2-1, the required
interface to enable the integration of SMO and Edge Resource Controller is termed as 02+, since it leverages
functionalities of O-RAN’s O2 interface.
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Figure 2-1: BeGREEN Intelligence Plane architecture

In the case of the SMO plus Non-RT RIC and the Near-RT RIC, BeGREEN considers two specific
implementations. On the one hand, the SMO plus the Non-RT RIC leverage the O-RAN Software Community
(0SC) implementation?, by focusing on exposing the Al/ML services available at the Al Engine through the
R1 interface, and on the management of energy-efficiency policies through the Al interface. On the other
hand, the Near-RT RIC is based on a commercial cloud-native solution, dRAX*, developed by Accelleran. Note
that, in addition to these frameworks, which will be integrated and used to demonstrate the Intelligence
Plane in the WP4 and WP5 validations and demonstrations, other specific implementations may be used to
validate technologies developed within WP4 but with a lower Technology Readiness Level (TRL).

Finally, completing the Intelligence Plane architecture, the Al Engine hosts ML models to offload inference
tasks from the RICs and implement the necessary Al/ML workflows or services. As shown in Figure 2-1, the

3 https://If-o-ran-sc.atlassian.net/wiki/spaces/RICNR/overview
4 https://accelleran.com/ran-intelligent-controller/
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Al Engine implements Al/ML services or pipelines including model management, monitoring, training,
serving, and a datalake with prepared data. The models are served in a serverless way, which enables
efficient scaling of workloads in production. Besides ML models, the Al Engine will host other functions
heavily used by rApps/xApps, such as the BeGREEN Energy Score and Rating calculations. These Key
Performance Indicators (KPIs) will be used to assess the energy efficiency of the network and its components
and applied optimizations, helping to identify areas or components with low efficiency and triggering the
required optimizations. These models and functions are exposed to the control rApps/xApps implementing
energy efficiency optimisations though AIA1 and AIA2 BeGREEN interfaces plus associated Al Engine Assist
rApps/xApps, what allows to decouple the implementation of control-loops from the management of ML
models. As will be detailed in the next subsection, this facilitates model reusability by different control
rApps/xApps and allows the integration of Al/ML workflows through the Al Engine independent of the RICs
implementation. A similar approach could be adopted for Edge and Core domains, using AIA3 and AlA4
BeGREEN interfaces to expose Al Engine Al/ML services to Edge applications or Network Data Analytics
Function (NWDAF) analytics. Nevertheless, this concept is no further elaborated in BeGREEN, and these
interfaces are only considered for monitoring purposes.

Next subsections detail the implementations of each of these main components.

2.1 AlEngine

The Al Engine is the key component of the Intelligence Plane, providing the framework to implement and
expose Al/ML services. Figure 2-2 depicts its main components and interfaces, and how it integrates with
the RICs. Conceptually, it entails three main design decisions: 1) loosely coupled approach, 2) model-based
Al/ML services, and 3) serverless inference, whose characteristics are described as follows:

1) Loosely coupled approach: The models are hosted in the Al Engine and exposed to the rApps/xApps
rather than being embedded in the control rApps/xApps that require their outputs. Consequently,
any control rApp/xApp can access the outputs of the ML model, which are exposed as data types
(e.g., offering load or energy predictions for specific cells), promoting model reuse. This solution
allows ML model developers to focus on the model implementation and optimisation, while
rApp/xApp developers can work on the control logic independently of how the model will be trained
and served.

2) Model-based Al/ML services: As depicted in Figure 2-2, each ML model will expose its own data
processing, training, monitoring and inference services. These services will be managed by dedicated
rApps/xApps that, in the BeGREEN architecture, they are denoted as Al Engine Assist rApps/xApps
(AIA rApp/xApp). Mainly, these AIA Apps are responsible for exposing the ML model outputs to the
control Apps by communicating with the inference service of each model in the Al Engine; in the case
of the Non-RT RIC the exposure will be done through the R1 interface, while in the Near-RT RIC it will
be done through the message infrastructure or databus. AIA apps may also implement operations to
feed the model dataset with new RAN data, to monitor or to enable the monitoring of model
accuracy and drift, and to trigger model retraining. Nevertheless, pre-trained or offline trained
models will be also supported by incorporating them to the Al Engine and exposing their inference
service.

3) Serverless inference: BeGREEN Al Engine implements serverless inference, allowing the deployment
of ML models on either servers or clusters separate from the RICs, thus enabling offloading through
serverless computing and hardware acceleration. Nevertheless, in the case of near-RT inference,
specific nodes could be specified to the required near-RT decision-making (e.g. the same server
hosting the Near-RT RIC or collocated servers in the same edge).
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Figure 2-3: Al Engine - MLRun MLOps pipeline

According to these requirements and design decisions, the implementation of the BeGREEN Al Engine is
based on the MLRun framework®. MLRun is designed to streamline the ML lifecycle on Kubernetes and
covers the whole ML pipeline. As depicted in Figure 2-3, it includes among others: (1) data ingestion and
processing, (2) model development and training, (3) model serving and (4) model monitoring. MLRun uses a
MinlO © service as shared storage for artefacts and accesses it using the S3 protocol. MinlO is a high-
performance, S3 compatible object store. It is built for large scale Al/ML, datalake and database workloads.
It is software-defined and runs on any cloud or on-premises infrastructure. Additionally, MLRun also allows
to incorporate pre-trained models into the serving and monitoring pipelines.

5 https://www.mlrun.org/
6 https://min.io
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Figure 2-4: Al Engine - MLRun real-time serving pipelines

Finally, MLRun integrates Nuclio’ for serverless model serving. Nuclio is an open-source serverless
computing platform designed for high-performance applications, particularly in data processing, real-time
analytics, and event-driven architectures. It abstracts away the complexities of infrastructure management,
allowing developers to focus solely on writing and deploying functions or microservices. Using Nuclio, MLRun
can deploy real-time pipelines which are served through an Application Programming Interface (API), as
depicted in Figure 2-4. When used within a Kubernetes cluster, Nuclio can exploit Kubernetes features that
allow to specify needed resources (e.g., CPU, memory and GPU)[6] and node affinity[7]. These features could
be exploited to train and serve models that require hardware acceleration or a specific deployment in nodes
located at the edge, such as the exposition of Near-RT inference to the xApps.

As previously introduced, the exposure of ML models hosted in the Al Engine to the RICs is done by the Al
Engine Assist rApps or xApps. The objective of these Assist Apps is to decouple the management of models
from the RICs and from the control rApps/xApps exploiting them, also allowing the specific handling of each
specific model. For instance, pre-trained models that are deployed at the Al Engine just for inference, may
not require a training and/or monitoring service to be implemented in the associated AIA rApp/xApp.
Similarly, the needs of data processing could be different for each model (e.g., real-time or batch data,
exposure through REST API, stream systems or databases, etc.). Therefore, BeGREEN Al Engine plus the AIA
rApps/xApps allow the ML Developer to decide how to implement the required Al/ML services for a specific
model with no impact on control rApps/xApps. Also, ML developers can decide which modules should be
implemented in the AIA rApps and/or the xApps associated to the same model. Figure 2-5 depicts the
reference model for the BeGREEN AIA xApps/rApps, which is described as follows:

External datalake(s)

I

/ R1,databus/datalake
l ¥ 01, E2, A1-El
» Data processing A1-ML
control
Training  |_ |
control e
AlA1/2 il
Monitoring % >AT-ML
control I
R1,
. Inference T »databus/datalake,
\ control / A1-El
O-RAN interfaces P

BeGREEN new/extended interfaces
AIA rAPP/xApp internal workflows e >

Figure 2-5: Al Engine - AIA rApps/xApps reference model

7 https://nuclio.io
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e Data processing control: Its main function is to consume and process data from O-RAN or external
domains, preparing it for training or inference services. The data, which is processed as real-time
data or as batch data, can be exposed directly to the inference control module, to the Al Engine
through AIA1 or AIA2 interfaces for training or monitoring, or to external datalakes (e.g., for offline
training outside the Al Engine). Also, communication with the training control module may occur to
manage training operations. Finally, the A1-ML interface may allow the exchange of processed data
between AIA rApps and xApps of the same model.

e Training control: Triggers the (re)training of models in the Al Engine, for instance according to inputs
from the monitoring control module. As aforementioned, communication with the data processing
control module may occur to prepare the collection and processing of the needed data.

e Monitoring control: Its main function is to monitor the performance of the model. Monitoring may
be triggered according to inference outputs or by internal logic (e.g., according to a period). A
possible output may be stopping the inference and/or triggering model retraining. The A1-ML
interface may be used to exchange information between the monitoring controls of AIA rApps and
xApps associated to the same model. For instance, to trigger model retraining by the rApp training
control module in case this module is not implemented in the xApp, or to stop the inference being
performed by xApps in case the monitoring module of the rApp has additional information (e.g.,
obtained from different Near-RT RICs).

e Inference control: Performs inference by getting processed data from the data processing control
module and triggering the model serving at the Al Engine through AIA1 or AIA2 interfaces. In the
case of the Non-RT RIC, the inference results are exposed to control rApps through R1 interface (see
Section 2.1.2) or to control xApps through A1-El interface (enrichment information). In the case of
the Near-RT RIC, the exposure to control xApps happens through the Near-RT RIC databus or
datalake, according to the vendor implementation.

An initial validation of the Al Engine and the AIA rApps can be found in Section 3.7.

2.1.1Energy Score and Rating

The energy scoring and rating functions in BeGREEN calculate the energy efficiency in the network at the
level of any component that measures both the volume of data that it transmits and its energy consumption.
The definition of energy efficiency used as the metric for energy score in the context of the BeGREEN project
is taken from the Next Generation Mobile Networks (NGMN) 2015 White Paper [8], which states “Energy
efficiency is defined as the number of bits that can be transmitted per Joule of energy”. Accordingly, the unit
that energy score exposes is expressed in bits per Joule.

The energy rating is a relative measure of components of the same type in the network as regards their
comparative energy efficiencies. Together, these measures can be used within the project as an indicator of
which areas of the network would benefit from additional orchestration of rApps/xApps for achieving
maximum energy efficiency. The following calculations are applicable to these measurements.

The Energy Score Es can be calculated as Data Volume Dv divided by Energy Consumption Ec:

Dv

Es = —
3.6 -Ec
The Data Volume can be calculated as:

Dv = DvDL + DVUL

where Dvp, and Dvy, represent the Downlink (DL) and Uplink (UL) Data Volume.

When using a throughput counter rather than a data volume counter, it may be necessary to account for
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length of period for the throughput measurement if it is measured using a time-relative measurement such
as Mbps, or megabits per second.

Dv = (ThDL + ThUL) - AT

where Thp, and Thy, are the average downlink and uplink throughput measured in the gNB, respectively, and
AT is the reporting period.

Although not based on ML models, the energy score and energy rating functions will be provided within the
Al Engine, making them accessible to other BeGREEN components in the architecture. Having absolute as
well as relative measures of energy efficiency will aid the identification of the how much the energy saving
functions of BeGREEN are contributing to the energy savings achieved in each component of the network.

Energy Score:

The energy score function in BeGREEN’s Al Engine communicates with the Non-RT RIC via the AIA1 interface
and with the Near-RT RIC via the AIA2 interface, as depicted Figure 2-2. The energy score function is
implemented as a serverless function hosted by the Nuclio component in the MLRun framework. It is
available at a HTTP endpoint. It will retrieve the energy score in bits/joule for a component on being called
with the data volume and energy consumption for the relevant component.

Energy Rating:

The energy rating function is also exposed through the AlA interfaces. Implemented as a serverless function,
it retrieves a relative energy rating for a network entity as a quintile (i.e., A, B, C, D or E). The energy ratings
are calculated, if possible, from a dataset containing data volume and energy consumption data for all
available entities of a specific type (e.g., CU, DU, Cell) in the network/slice/region by reference to recent
historical data. It is recommended at least to use 24 hours of historical data in order to have a broad picture
of the relative energy efficiency of the entities being compared.

The energy rating function, which is also accessible as a serverless function in Nuclio through a HTTP endpoint,
stores a record of the energy ratings into the datalake of the Al Engine. This allows subsequent invocations
of the function to be returned more quickly if the energy ratings for the category of component have already
been calculated recently. Recalculation of the energy ratings for each component type is also possible where
the data used to calculate the ratings is older than desired.

Table 2-1 corresponds to an output from the energy rating function that shows the energy score quintile for
each requested cell relative to all other cells in the dataset.

Table 2-1: Energy Score and Energy Rating Examples

Data Volume (kbits) Energy Consumption (Wh) Energy Score (bits/J) Energy Rating
Cell A 871446613 4960 48804 A
Cell B 890397029 9750 25367 C
Cell C 79307499 4168 5285 E

2.1.2SMO and Non-RT RIC

The SMO and Non-RT RIC components of BeGREEN have two main functionalities, as depicted in Figure 2-6.
Firstly, to host the required control rApps to create the automated non-RT control-loops, which implement
and manage the cross-domain optimisations targeting energy efficiency. Secondly, to expose to these rApps
Al/ML services (Al Engine), xApp policies (Near-RT RIC), and RAN and Edge services (SMO).
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Figure 2-6: SMO and Non-RT RIC - Architecture
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Figure 2-7: Non-RT RIC - Data model of the BeGREEN Al Engine assist rApp information types

Implementation-wise, BeGREEN is focused on the integration of the Non-RT RIC with the Al Engine and with
the Near-RT RIC with the objective of validating the Intelligence Plane. Therefore, specific details about SMO
functions related to O1 and 02 interfaces, and their extensions O1+ and 02+, which will have a lower TRL
level, can be found in Sections 2.2 and 2.3.

As introduced in Section 2.1, the integration of the RICs and the Al Engine will be done through the Al Engine
Assist rApps and xApps. While the main functionalities of the AIA rApps/xApps were previously introduced,
this section will focus on of their exposure to control rApps. To this end, the Data Management and Exposure
capabilities (DME) of the R1 interface are exploited [9], which simplifies the communication between data
producers and data consumers. As it was presented in BeGREEN D4.1 [1], implementation-wise, BeGREEN
leverages the Information Coordination Service (ICS) component, provided by the OSC [10]. This element
allows the registration of specific information types, which in the case of ML models consist of the ML model
outputs when doing the inference. Figure 2-7 shows the followed data model, where the Job Definition
groups the required input parameters (e.g., cell ids, period) and the Job Data consists of the output
parameters (e.g., cell ids, output of the model, accuracy of the prediction, etc.).
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Figure 2-8: Non-RT RIC - Data model of the BeGREEN AIA rApps
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Figure 2-9: Non-RT RIC - Data model of the BeGREEN Control rApps

Once the information type is registered in the ICS through the Non-RT RIC, the deployment of the AIA rApp
triggers the registration of a producer for the associated information type. The producer only needs to
declare an URL for creating the subscriptions or jobs, which will follow the format defined in the information
type, and another one for periodic health check from the ICS. In the case of AIA rApps, producers will be also
linked to a specific ML model or function (e.g., for energy score calculation) in the Al Engine by specifying the
serving URL of the model or function in Nuclio (Model Callback URL). Figure 2-8 depicts the main fields of the
AlA rApp model.

The information type consumers, i.e. the control rApps, declare the requested information types and their
configuration (according to the job definition), together with the URL where they expect the results to be
delivered, as shown in Figure 2-9. According to this information, the ICS/R1 component searches for the
needed producers and creates the required jobs or subscriptions. Finally, the producers will start sending
the required data to the consumers as defined in the jobs. Additional details on the implementation of the
required workflows related to the AIA rApps operations can be found in Section 3.7.

In BeGREEN, the basic interaction between the Non-RT RIC and the Near-RT RIC will happen through the Al
interface [11], mainly though A1-P to manage the policies related to energy efficiency optimisation.
Additionally, other Al functions, such as A1-El and A1-ML, shall be implemented and validated according to
the requirements of the Al Engine component, as was introduced in Section 2.1. Regarding energy saving
optimisations, the last specification of O-RAN already considers the definition of specific policy and data
types to manage them [12]. The main novelties of this release are:

e Energy saving policy type: Applicable to a list of Tracking Area Identities (TAls), to a list of cells or to
a specific cell.

e Energy saving policy targets: Target energy consumption (e.g., targeted RU energy consumption or
energy consumption reduction).

e Energysavingresources: Defines the wanted impact on a list of cells. Used to avoid (as far as possible)
or forbid impacting the operation or the coverage of specific cells while doing energy saving.
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Figure 2-10: Non-RT RIC - BeGREEN Energy Saving A1l Policy

According to these fields, Energy Saving Al policies can be enforced through the Near-RT RIC and the
appropriate xApps. BeGREEN will follow this approach to define and implement the Al policies related to
the control of RUs, being compliant with the O-RAN specification. Additionally, the Energy Score (bits/J) will
be also considered as a possible policy target. This way, xApps may consider energy efficiency as the
optimisation objective instead of just energy consumption, increasing the options when designing xApps and
their interactions with RAN functions.

Also concerning the Al interface and its associated policies, recently the O-RAN Alliance has started
addressing the management of conflicts among policies at the non-RT and near-RT levels. Several strategies
related to conflict detection and management are being studied, such as implementing static and dynamic
policy prioritization, or allowing partial enforcement of policies. Following the static approach, BeGREEN
proposes a new field to be added in the policy instances to specify its priority. Using this priority, the near-
RT will have a simple way to manage conflicts in the management of resources by xApps. More details on
this and additional strategies can be found in Section 2.1.3.

According to the aforementioned fields, Figure 2-10 depicts the structure of BeGREEN’s Al policy for
providing energy savings in the RUs.

2.1.3 Near-RT RIC

As described in BeGREEN D4.1 [1] and introduced in section 2 of this document, the Near-RT RIC oversees
and manages the xApps of the system to provide actions over the objectives of the network. The Near-RT
RIC works in a timely fashion providing solutions in the range of milliseconds (ms). To achieve this, the Near-
RT RIC needs timely data from the RAN to be exposed to the xApps to support RAN control actions, while
receiving Al policies from the Non-RT RIC that guide the xApps in the actions needed to fulfil network
objectives.

To this end, the dRAX Near-RT RIC from Accelleran provides a Telemetry Collector, which is designed to
efficiently manage and organize telemetry data from various segments of the O-RAN infrastructure. Central
to this framework is the Telemetry Gateway (TGW), which ensures interoperability across different O-RAN
interfaces, such as E2, O1, F1, or Al. The TGW translates and regenerates data from the Radio Unit (RU) and
Distributed Unit (DU). This way, the framework supports both fully compliant O-RAN systems and those
lacking complete integration. For non-compliant systems, it translates non-standard interfaces to align with
the O-RAN ecosystem. It processes raw and abstracted data from the radio environment, feeding it to the
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Near-RT RIC for decision-making and RAN control. The TGW collects data from sources like the Kafka bus and
publishes output metrics for use by other xApps, ensuring consistency and independence from data sources.

To validate and provide support to the BeGREEN proposal, two main xApps (described in sections 2.1.3.1 and
2.1.3.2) will be extended and included in the system evaluation and integration with the Intelligence Plane.
Additionally, procedures to manage and mitigate conflicts among xApps will be implemented and evaluated.
Next sections provide a detailed description of these mechanisms.

2.1.3.1 Energy Saving XApp

The Energy Saving xApp is an application developed to manage the energy consumption of various network
cells. The energy-saving process relies heavily on telemetry. Telemetry involves gathering data through 3GPP
supported metrics, typically sourced from the DU/RU or other equipment. However, not all required
telemetry data are readily available. Therefore, an important aspect is the creation of a new metric: the
energy saving percentage. This metric is defined as the ratio between the energy consumption during
energy-saving periods versus that of non-saving periods.

To support this telemetry requirement, the TGW is essential. As aforementioned, the TGW is developed to
integrate metrics from non-3GPP interfaces, as well as non-O-RAN compliant metrics, into the telemetry
framework. This integration is crucial for applications like energy saving and Quality of Service (QoS)
management within the system.

The Energy Saving xApp operates in two specific use cases:

e Single Frequency Network: This use case focuses on coverage optimization in scenarios where all cells
operate at the same frequency. For example, as depicted in Figure 2-11, if there are six cells in an
area and one cell is shut down, the remaining five cells increase their power to cover the area
previously served by the shutdown cell. This approach optimizes coverage by leveraging small cells
within the system.

Eol o

Figure 2-11: Energy Saving xApp - Single Frequency Network Use Case

e  Multi-Frequency Network System: In this case, the network consists of two layers: a coverage layer
with lower frequency cells, and a capacity layer with higher frequency cells. As depicted in Figure
2-12, when a cell in the capacity layer is shut down, users are typically handed over or forwarded to
the coverage layer cells. The coverage layer cells, operating at a lower frequency, provide broader
coverage, ensuring continuous service despite the shutdown of capacity cells. This is a typical
scenario for MNOs.

O Frequency 1

O Frequency 2

Figure 2-12: Energy Saving xApp - Multi Frequency Network Use Case.
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Table 2-2: ES xApp - Required RAN metrics for the ES xApp Algorithm Decision-Making

Name 3GPP name Unit
DL Total PRB Usage RRU.PrbTotDI #PRB
Number of active UE per cell DRB.ActualActiveUe H#UE
Mean Transmission power of an NR Cell CARR.MeanTxPwr dBm

The first step in the Energy Saving xApp process is detecting the operational network. This requires
configuring a list of network cells and identifying whether each cell belongs to the coverage layer or the
capacity layer. Additionally, it involves understanding the neighbourhood relationships between cells, which
can be optionally sourced from the RAN metrics. A list of UEs in the network is also necessary; if not available,
this information will also be retrieved from the RAN metrics. The energy-saving algorithm and decision-
making process rely on three specific metrics, which are described Table 2-2.

Apart from the metric, the xApp needs to process actions to control the RAN. The following is the list of
actions and capabilities needed to provide energy savings within the Energy Saving xApp.

e Adjusting Transmission Power: When the Energy Saving xApp decides to conserve energy by turning
off cells, it initiates a procedure to gradually reduce transmission power. This serves two purposes:
1) Avoiding drastic impacts on the network, and 2) allowing UEs to move from one cell to another
through A3 event handovers.

e Cell Turn On and Off: When the Energy Saving xApp decides to shut down a cell, it waits until the
transmission power is reduced to a minimum configurable threshold before initiating the shutdown.
If UEs remain in a cell that is about to be powered down, the system triggers a handover to nearby
cells—either capacity or coverage cells—depending on the received power values to ensure
continuous service. Conversely, if a cell needs to be turned on to meet traffic demands, the xApp
triggers the process to power up the specific cell.

e Handover: Before a cell is powered down, the system ensures that all UEs are handed over to other
cells. This can either be to neighbouring capacity cells or to coverage cells, depending on the signal
strength received by the users.

Regarding the xApp algorithm or control-loop, during normal network operation it measures the Physical
Resource Blocks (PRBs), throughput and power usage. If a cell's PRB usage falls below a configurable
threshold, the cell is marked for shutdown. The power is gradually reduced, prompting UEs to handover to
other cells before the cell is shut down. If the throughput of other cells exceeds a certain threshold, this
triggers the cell turn-off process. When the algorithm determines that a cell needs to be turned on, it is
powered up and users can handover back to this cell, thereby increasing the network's capacity.

An important feature of the Energy Saving xApp is its capability to use cell load predictions from other xApps
to optimize network performance. The cell load prediction xApp collects traffic information and uses Al/ML
algorithms to predict load usage. This enables the Energy Saving xApp to foresee which cells will need to be
turned on or off in the future, providing more accurate and efficient network management. In the case of
the BeGREEN project, as described in section 2.1, this prediction feature will be provided by the models
hosted in the Al Engine, rather than internally in the xApps.

The global interaction between different components in the Energy Saving xApp is crucial for its functionality.
When information comes from the E2 node, it enters an E2 broker. This information is then passed to the
dRAX databus, which connects to the TGW. The TGW interconnects information with different parts of the
system, including the radio or a simulated radio like a RAN emulator or RIC Tester, as shown in Figure 2-13.
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Figure 2-13: Energy Saving xApp - Global interactions for the Energy Saving xApp

Figure 2-14: Energy Saving xApp - Accelleran’s dashboard to evaluate the performance of Energy Saving xApp

The Energy Saving xApp includes an analysis dashboard to visualize the effects of decision-making on users.
This dashboard provides insights into energy savings achieved and offers a comprehensive analysis of the
network, summarizing the RAN matrices. As shown in Figure 2-14, in some scenarios the Energy Saving xApp
is able to provide savings larger than 20%, maintaining a QoS above 90%.

The extension of this xApp within the BeGREEN project will include the integration with the Intelligence Plane
for traffic prediction and the conflict management capabilities. This will be reported in the next deliverables
of WP4 and WP5.

2.1.3.2 Handover Manager xApp

The Handover Manager xApp is designed to optimize the handover process in 3GPP systems, offering a
proactive approach to managing network resources efficiently. Traditional handover algorithms, such as the
A3 algorithm, are reactive and focus on per-device optimization. In contrast, the Smart Handover-xApp
employs advanced algorithms like Mobility and Load Aware proActive haNDover Algorithm (MOLA-ADNA) to
achieve global optimization [13], ensuring efficient load distribution and improved overall network
performance. This adaptive and QoS aware handover algorithm takes multiple metrics into account to do
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network level optimization of the cell load. The Handover Manager xApp is developed on the dRAX
framework, where all communication happens through the dRAX databus, both for receiving messages and
sending commands. The architecture of the Handover Manager (HM) xApp, shown in Figure 2-15, includes
the following components:

e Data Retriever: Retrieves messages from the dRAX databus, including Reference Signal Received
Power (RSRP) and Reference Signal Received Quality (RSRQ) measurements of each UE to their
respective serving and neighbouring cells, as well as the throughput of each UE.

e Data Processor: Processes incoming messages and prepares information to be stored in the internal
Data Store.

e Data Store: Holds the current network overview, including each UE's serving cell, throughput, and a
list of all neighbouring cells, along with their RSRP and RSRQ values and the history of each metric.

e Handover Algorithms Database: Contains different handover algorithms, including a processor for
calculating additional metrics and the logic for each algorithm.

e Handover Execution Engine: Executes the handover algorithm processor, updates metrics in the Data
Store, and executes the handover algorithm logic to generate a handover list.

e Action Taker: Generates appropriate handover commands based on the handover list and sends
these commands to the dRAX databus for execution.
The Handover Manager xApp continuously monitors data from the RAN in the RIC, providing a global
overview of the network that allows for proactive optimizations. Configuration options, such as selecting a
handover algorithm, setting the periodic interval of handover execution, and the length of data history for
metrics, can be adjusted in real-time.

To facilitate smart handovers, the Handover Manager xApp collects and processes various metrics through
data exposure to the dRAX data bus. Key metrics include:

e RSRP and RSRQ per UE to the serving cell.
e RSRP and RSRQ per UE to all neighbouring cells.
e Downlink and uplink throughputs per UE.
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Figure 2-15: Handover Manager xApp - Internal Architecture
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This information flows from the cells to the data bus and then to the xApp for analysis. Commands from the
xApp back to the data bus and cells include automatically triggered handover commands, specifying the
selected cell for each handover.

As aforementioned, the Handover Manager xApp is capable of working with two particular algorithms: A3
and MOLA-ADNA algorithms. The typical handover in 3GPP systems uses the A3 handover algorithm, a
reactive approach. It triggers when the received power of UE crosses a certain threshold, with cell selection
typically going to the one with the highest received power. The objective is per-device optimization,
connecting to the neighbour cell with the highest signal indicator plus an offset over a period of time.

The MOLA-ADNA handover algorithm used by the Handover Manager xApp is proactive, meaning it actively
monitors the network via the RIC and initiates handovers before issues arise. It selects cells based on multiple
metrics, including RSRP, RSRQ, UE throughput and cell load. The algorithm aims for global optimization,
distributing the network load across all cells. Using regression based on RSRP and RSRQ, it predicts the
direction of UE movements, optimizing traffic distribution. The process involves: (1) Collecting required
metrics from the data bus, (2) estimating the direction of UE movement and cell load, and (3) implementing
multi-criteria decision-making to generate a handover list.

Several experiments were conducted to evaluate the proposed MOLA-ADNA handover algorithm, comparing
it to the commonly used A3 handover algorithm [13]. Using dRAX with three small cells and three general-
purpose UEs in an industrial setup, the experiments monitored throughput and Block Error Rate (BLER) QoS
parameters. The setup included 20 MHz Time Division Duplex (TDD) small cells operating on band 42 and
Raspberry Pis with band 42 LTE modems as UEs. Two static UEs were attached to cell Production-1, while a
mobile UE started at cell Warehouse and moved towards cells Production-1 and Production-2. Static UEs
generated 50 Mbps each, and the mobile UE generated 20 Mbps.

Key findings showed that MOLA-ADNA significantly improved UE throughput during movement, with the
mobile UE's mean throughput increasing by 25% [13]. It also maintained static UEs' throughput more
effectively and reduced the mean BLER by 65%, enhancing communication reliability. MOLA-ADNA's
proactive optimization triggered handovers before QoS parameters degraded, unlike the reactive A3
algorithm as shown in Figure 2-16. Additionally, MOLA-ADNA demonstrated scalability, optimizing networks
with up to 750 UEs within 1.2 seconds. Overall, the real-life experimentation highlighted the clear advantages
of the MOLA-ADNA handover algorithm over the traditional A3 algorithm, emphasizing its proactive, multi-
metric approach to network optimization. The enhancements for the BeGREEN project will include the
extensions towards Geo-localization based on external information, e.g. ISAC, and extensions to support
conflict management. This will be reported in the next project deliverables.
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Figure 2-16: Handover Manager xApp - Preliminary MOLA-ADNA Smart Handover algorithm results.
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2.1.3.3 Conflict Mitigation

Conflict mitigation involves managing situations where two applications or entities perform conflicting
actions. In the context of O-RAN, conflicts occur when two actions conflict within RAN components. To
manage these conflicts, policies should be considered first. Policies are rules used to control changes in the
state of managed components, providing guidelines for network actions. However, these policies can
sometimes create conflicting actions. Strategies to minimize the impact of these conflicts can be categorized
into three main strategies: conflict detection, conflict resolution, and conflict avoidance.

e Conflict detection involve pre and post actions to identify potential and actual conflicts, whether
direct, indirect, or implicit. Indirect conflicts pose a challenge as the platform may detect potential
conflicts but determining whether these conflicts are harmful is not straightforward. Blocking
potential conflicts involving many use cases is not a viable solution. Detecting indirect or implicit
conflicts, especially with more than two conflicting applications, is a highly complex task.

e Conflict resolution, on the other hand, is typically a post-action process. Resolving ongoing conflicts
is not trivial because different resolutions may harm the network or fail to meet the system's
objectives. This resolution process requires careful consideration to ensure that the chosen
resolution does not introduce new problems or exacerbate existing ones.

e Conflict avoidance or guidance is a pre-action strategy aimed at detecting conflicts based on previous
experiences. This approach uses mechanisms like E2 guidance to avoid future conflicts, leveraging
the fact that xApps often exhibit repeated behaviour. By providing guidance and information to
xApps, the network can prevent many conflicts before they occur.

Regarding direct conflicts, the RIC may not always be able to decode E2SM level information. Extending E2-
related APl to enable the platform to use xApps for E2SM-specific processing would offer one solution to
address this issue. E2SM level processing can lead to delays between the E2-related API request and the
E2AP RIC Control Request message to the E2 Node. Since xApps are likely to repeat the same or similar
requests for the same E2 Node, repeating conflict mitigation processes at each occurrence is wasteful and
time-consuming. A longer-term guidance solution giving xApps a priori permission would avoid this issue. On
the other hand, indirect and implicit conflicts are generally only detectable as post-action, after
corresponding E2AP transactions have been completed. The RIC may be able to observe E2 Node KPIs to
detect the impact of indirect conflicts, leading to the need for platform-initiated requests, either directly to
the E2 Node or to trigger xApps to initiate data collection. This can be done using E2SM-KPM and/or E2SM-
CCC. However, the analysis of collected data and messages may be difficult if the platform cannot decode
E2SM level information.

In the BeGREEN project, conflict mitigation spans several scopes, including SMO, Non-Real-Time RIC, which
involves rApps, Near Real-Time RIC, involving xApps, and interfaces, including the Al and E2 interfaces. In
the following points the current work in the O-RAN Alliance regarding conflict mitigation is detailed and the
BeGREEN approach is described.

Current Status in O-RAN:

In the current status of O-RAN, Work Group 2 (WG2) focuses on conflicts related to Al policies, though this
topic is still not being addressed in the current Al specification. The main scenario is related to a set of Al
policies to be requested at the Non-RT RIC, where their targets may not be predictably achievable due to the
potential contradictory state of the RAN once these policies are enforced. Currently, three main conflict
types are being studied: 1) Objective conflict, related to policy types with contradictory objectives (e.g. QoS
and Energy Saving), 2) Resource conflict, which considers policies leading to inconsistent utilisation of RAN
resources, and 3) Scope conflict, which is caused by contradictory policies targeting related scopes (e.g., Slice
QoS vs UE QoS).
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In the O-RAN Work Group 3 (WG3), conflict mitigation is considered in four different areas of the Near-RT
RIC architecture specification [14]. The first area is conflict mitigation found in section 6.2.3 of the
specification, which defines the role of the Near-RT RIC platform in conflict mitigation. Its functionality
involves detecting and resolving potentially overlapping or conflicting requests from multiple xApps. Conflict
mitigation also addresses interactions between different xApps, as their objectives may result in conflicting
actions. However, the specifics are not fully defined, and further work in WG3 on conflict mitigation is
ongoing. The second area is the Al policy procedure, described in section 9.2.2 of [14], which outlines the
procedures for setting up, updating, deleting, and querying policies. The third area is the definition of the
policy management service, which is related to the A1l APl procedures and is detailed in section 9.2.1.1 of
[14]. And the fourth area is the E2 guidance API-related procedures, found in section 9.3.3, which defines
the communication between xApps to avoid conflicts. It allows authorized xApps to obtain guidance from
the Near-RT RIC platform's conflict mitigation functionality before initiating an action. The platform may
signal conflicts or provide guidance to internal processes and other xApps.

Consequently, regarding the conflict management in the RICs, two conflict scopes can be considered. The
first one may happen in the context of Al policy conflicts, that typically arise when two different policies
affect the same RAN element (e.g., cell) with contradictory objectives (e.g. RAN resource reservation and
release). Such conflicts are ideally resolved in the Non-RT RIC but can also be managed in the Near-RT RIC.
The second conflict scope may occur when different xApps generate contradicting actions over the RAN
elements. Such conflicts should be managed in the Near-RT RIC. For instance, if several control messages are
related to UEs (e.g., related to handover, carrier aggregation or dual connectivity control), it is possible that
only the first message to arrive at the E2 Node will succeed, which can lead to a latency-sensitive critical path
issue (direct control conflict). This aspect is being addressed by WG3. The conflict mitigation function in the
platform could observe E2-related APl messages from xApps but may not detect potential indirect conflicts
between the two requests, highlighting the complexity of indirect xApp conflicts.

dRAX Near-RT RIC implementation:

To support general conflict management in the RIC, several modifications are needed for the dRAX
framework, as shown in Figure 2-17. The first modification is that the Non-RT RIC needs to define an Al policy
manager to send policies to the Near-RT RIC. The second modification involves extending the Near-RT RIC to
support several entities, which can be divided into three specific areas:

' rexrc |

;A elleran 3rd party
| irApps

L. y ) —— J
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(

— Yy Y
S S ) S

Figure 2-17: Conflict Mitigation - dRAX architecture to support conflict mitigation.

e Subscription Manager: This interface will receive information from the Al policies, handle the
policies, and direct them to all the xApps in the system. The Subscription Manager is a subscription
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interface that will be part of the SDK of the dRAX. It serves as the interface between the dRAX and
the subscription manager entity in the Non-RT RIC. The Subscription Manager is responsible for
translating and managing Al policy messages, which will be derived from future release of the Al
policy by the WG3 in O-RAN (Figure 2-18).

e Conflict Manager Entity: This entity will manage all the conflict processes within the Near-RT RIC. It
is divided into three important components: 1) the xApps Subscription Manager, the 2) Subscription
Database, and 3) the Conflict Mitigation, Detection, Resolution, and Avoidance Entity.

o The xApps Subscription Manager handles the subscription of xApps to assist in the conflict
process. It is responsible for collecting and managing the subscription database, managing
and inspecting the E2SM level information, and overseeing the onboarding, securing,
authorizing, and conflict authorization of the xApps.

o The Subscription Database plays a crucial role in conflict mitigation by maintaining
information about RAN elements and their relationships with policies and actions. It serves
as the front-facing API for the GUI dashboard, enabling conflict mitigation resolution through
exclusive or priority-based techniques. This database, or matrix, helps identify potential
conflicts by defining actions for each element based on the type of element and policy type.
It also provides a trace of the status of each RAN element, allowing the control manager to
monitor and manage conflicts effectively.

o The Conflict Mitigation, Detection, Resolution, and Avoidance Entity (Figure 2-19) is tasked
with detecting, resolving, and providing guidance to avoid conflicts between xApps. It
handles policies from the Al interface and distributes them among the xApps. Additionally,
it defines mechanisms to manage conflicts, which could be exclusive, or priority based.

e Conflict Avoidance Handler: The conflict avoidance handler is an entity that resides within each xApp
to respond to policies and conflicts within the system. The xApp Conflict Manager is responsible for
creating communication channels between all xApps to prevent conflicts. Each xApp needs a handler
dedicated to specific conflict avoidance tasks. The dRAX Near-RT RIC will provide mechanisms for
xApps to publish and receive alerts, particularly through the O1 VEST alert. It is up to the xApp
developers to decide which types of alerts to publish and which to react to. This marks the first step
towards collaborative conflict avoidance. Additionally, this mechanism can be used by rApps to
manage Al policy conflicts and distribute responsibilities via the O1 interface.

SDK

Figure 2-18: Conflict Mitigation - dRAX Subscription Manager

xApp subscription Conflict mitigation
manager Detection / Resolution /
Avoidance

Figure 2-19: Conflict Mitigation - dRAX Conflict manager entity
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Figure 2-20: Conflict Mitigation - dRAX conflict avoidance handler inside xApps

Conflict Management collaborative solution:

Figure 2-21 presents the general implementation of the collaborative solution for the RIC, describing the
elements and entities involved in conflict management. In the upper part, the SMO holds the Non-RT RIC,
where rApps work together. Below that, there is the dRAX Near-RT RIC and, at the bottom, the RAN elements
are depicted. To support conflict mitigation several modifications to the infrastructure are made. First, the
Al policy management resides inside the Non-RT RIC. This component sends A1l policies to the Near-RT RIC.
These policies are then distributed to all xApps and are listened to by the policy listener or Al broker within
each xApp. As each xApp performs its tasks, any action an xApp intends to initiate is sent through the conflict
avoidance handler to the dRAX databus. The conflict avoidance handler detects if another xApp is likely to
issue a conflicting action. In this collaborative approach, if two xApps attempt to use the same resource, they
step back and resolve the conflict using information from the dRAX databus based on information from the
policy. Finally, the xApp conflict management stage is used to detect potential conflicts throughout the
system, ensuring proactive conflict detection and resolution.

[T conflict detection
Policy Listener (A1* broker)
Conflict avoidance Handler

R1
Al ( )

dRAX - Near RT RIC
PL

0O1*Kafka

dRAX Bus

E2 Broker

v
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Figure 2-21: Conflict Mitigation - conflict management solution proposed by BeGREEN
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Figure 2-22: Conflict Mitigation - message workflow for collaborative conflict mitigation

The message workflow for the collaborative conflict mitigation is described in the Unified Modeling Language
(UML) diagram depicted in Figure 2-21. The validation of this workflow considering scenarios involving
conflicting xApps devoted to QoS and Energy Savings, will be reported in following deliverables.

2.2 Integration with BeGREEN RAN domain

This section details how the BeGREEN Intelligence Plane integrates with O-Cloud, O-gNB, RIS, ISAC and Relay
technologies according to the control and monitoring needs of the proposed energy efficiency optimisations.
Note that, as reported in BeGREEN D4.1 [1], in the BeGREEN project RIS, Relay and ISAC technologies are
considered, which are currently beyond the scope of O-RAN. Therefore, in addition to O-RAN components,
interfaces and procedures related to O-Cloud and O-gNB control and monitoring, whose utilisation within
the context of energy saving uses cases was already introduced in [3], the Intelligence Plane requires of novel
approaches to integrate these other technologies.

2.2.15G Base Station / O-gNB

BeGREEN research in this area was distributed in several WPs. In WP3 the research was concentrated in a
specific module that turns off the RU RF Power Amplifier (PA) when no data is transmitted in the Orthogonal
Frequency-Division Multiple Access (OFDMA) downlink symbol (Power Amplifier Blanking Module). In WP4
the research was focused on two Al based modules: a) The Digital Pre-Distortion (DPD), and b) the Envelope
Tracking (ET) modules. For the convenience of the reader, both activities in WP3 and WP4 related to the BS
Energy Consumption saving research have been reported in WP3 deliverables (e.g., BeGREEN D3.2 Section
3.2 [15]).
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These solutions do not require of a Non-RT RIC or Near-RT RIC control, since decisions are taken on a real-
time basis by the RU module. Nevertheless, BeGREEN WP4 is developing other strategies that will require of
control-loops to optimise the energy efficiency of O-gNBs and will exploit O-RAN interfaces and components
(e.g. Energy Saving xApp introduced in 2.1.3.1 and non-RT RU control described in Section 3.3). According to
current O-RAN specifications, RU energy saving functionalities shall be managed by the DU component
through the M-plane [16] including carrier deactivation, RF channel switch off/on, advanced sleep modes
and deep-hibernate. Then, rApps may have access to these functionalities through the O1 interface [17],
while xApps may use the Cell Configuration and Control (CCC) Service Model of the E2 interface (E25SM) [18].
Therefore, the proposed solutions in BeGREEN will leverage these interfaces.

Given the ISAC latency and bandwidth requirements when processing the signals at the RU, to date O-RAN
does not put much emphasis on its implementation and it is not part of O-RAN Alliance focus. Therefore, no
SM has been standardised for gathering data directly from the PHY layer. If that were the case, i.e. that the
I/Q samples available at the RU are to be processed, it is wise to consider that any pre-processing of the
signals needs to happen at early stages to reduce the datarate towards the core network (CN). This pre-
processing could take place at the O-RUs, O-DUs or, in case of a centralized deployment, either at the O-CU
or at the Near-RT RIC. These two last options could be the best solution when processing jointly data from
different sources, i.e. different O-RUs.

BeGREEN project will study the integration of ISAC developments in the project in a tighter manner than
described in the Description of Work, seeking to provide sensing information to the O-RAN Intelligence Plane,
subject to the features of the considered O-RUs. These contributions will be reported in the next project
deliverables of WP2 (architectural concept), WP3 (ISAC development work) and WP4 (implications on the
Intelligence Plane and RAN domain integration).

2.2.20-Cloud

As introduced in [19], efficient CPU energy management is essential for optimizing the performance and
sustainability of O-Cloud nodes in the O-RAN architecture. This section outlines the key aspects of CPU
energy saving modes, data retrieval processes, and the roles of various components and interfaces within
the O-RAN ecosystem.

In the O-RAN O-Cloud architecture, depicted in Figure 2-23, telemetry and inventory management is handled
by the 02 interface, which is responsible for retrieving data such as supported CPU energy saving modes,
CPU utilization, current operational CPU power, frequency, and voltage from the O-Cloud nodes. Additionally,
RAN data, including user traffic load and RAN configurations related to network functions (O-DU & O-CU), is
sourced from the O1 interface. The 02 interface enables changes in network energy configurations, allowing
for dynamic adjustments to optimize energy consumption based on real-time data.

Several components are involved in this process. The Federated O-Cloud Orchestration and Management
(FOCOM) manages the orchestration and lifecycle of O-Cloud resources, ensuring efficient allocation and
operation. Infrastructure Management Services (IMSs) provide a logical interface for orchestrating the O-
Cloud lifecycle processes, including the management of network functions and other operational procedures.
Deployment Management Services (DMS) manage the lifecycle of deployments that utilize cloud resources,
ensuring smooth and efficient deployment and operation of network functions.

The 02 interface is a crucial element in the O-RAN architecture, providing secure communication between
the SMO and the O-Cloud. It facilitates the management of O-Cloud infrastructures and the deployment
lifecycle of O-RAN cloudified network functions. Its extensible design allows for the addition of new
information or functions without needing protocol or procedure changes, supporting a multi-vendor
environment independent of specific implementations of the SMO and O-Cloud.
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Figure 2-23: O-Cloud Energy Savings — Interfaces and operations [19]
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Figure 2-24: O-Cloud Energy Savings - Components and interfaces [20]

02 IMSs are tailored for the management and provisioning of O-Cloud resources available to the SMO
through FOCOM over O2ims. This includes the allocation of available O-Cloud resources (e.g., compute
resources and networks) into O-Cloud node clusters and all cluster-wide operations throughout their
lifecycle. 02 DMSs are dynamically created over O2ims for NF deployment placement and management of
O-Cloud node clusters. They prepare O-Cloud node clusters for the network functions being deployed, with
exceptions for cluster-wide operations requested by SMO through FOCOM over O2 IMS. Figure 2-24
summarizes the involved components and interfaces specified by O-RAN.

The 01 interface connects all O-RAN managed elements (and the management entities within the SMO
framework. It ensures the operation and management — e.g. Fault, Configuration, Accounting, Performance,
Security (FCAPS), software management, file management) of O-RAN components. This interface manages
various O-RAN components, including the Near-RT RIC, O-CU, and O-DU in 5G NR. The monitoring of the RAN
is conducted through the O1 interface using performance monitoring jobs, which provide aggregated
counters. The O1 monitoring also interfaces with the Non-RT RIC to facilitate comprehensive performance
analysis and management.

In summary, the integration of CPU energy saving modes within the O-RAN architecture involves a complex
interplay of telemetry, inventory data retrieval, and dynamic network energy configuration changes. The 02
and 01 interfaces play critical roles in managing O-Cloud resources and orchestrating the deployment and
operation of network functions, ensuring efficient and sustainable network performance.
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2.2.3RIS

As introduced in BeGREEN D2.2 Section 4.3.2 [21], RIS will be both controlled by the Near-RT RIC for near-RT
operations (such as RIS per-element configuration) and the Non-RT RIC (such as logical split of the RIS). To
this end, the RIS-enabled BeGREEN architecture is updated as depicted in Figure 2-25.

To integrate the RIS (i.e., the RIS Actuator) with the Near-RT RIC, an extension of the E2 interface is
considered, denoted as E2+ in the BeGREEN architecture. To this end, two new SMs will be used:

E2 Service Model Smart Surface Control (E2SM-SSC): This SM would modify and initiate RIS control
related call processes and messages, and it will execute commands that may result in change of RIS
control behaviour in a near-RT time scale. Some of the procedures will be:

o Load pre-calculated configuration from a codebook. This procedure requires to specify the
following parameters:

= conf_id: configuration identifier which normally will map to a specific azimuth angle
0;and elevation angle @;.

= codebook id: codebook identifier. Several codebooks may be available at the RIS
actuators. These will be normally similar to the ones presented in [22] and will
translate transmitted angles ( ©,®;) to reflected angles (©,®, ) given the
configuration specified by (0; ;).

= RIS id: RIS identifier to select the target RIS.

o Set phase-shift of a specific element on a RIS, requiring the following elements:
= element_id: identifier of the element of the RIS that needs to be modified.
= phase_shift: amount of phase shift to be set in the given antenna element.

= RIS id: RIS identifier to select the target RIS.

o Load new codebook, with the parameters:
= codebook_conf: codebook information that describes a particular RIS model

= codebook_id: codebook identifier.

o Delete existing codebook, containing the parameter:
= codebook_id: codebook identifier.
E2 Service Model Smart Surface Monitoring (E2SM-SSM): This SM would monitor RIS state in a near-
RT time scale. Some of the procedures will be:

o Get RIS configuration, which will retrieve the current configuration of a given RIS. It will
require the parameter:

= RIS_id: RIS identifier to select the target RIS.
o Get loaded codebooks, which will retrieve the current codebooks available in each RIS
actuator. No parameters are required.
o Get phase-shift of a specific element, which will require the following parameters:

= element_id: identifier of the element of the RIS from which the phase shift need be
retrieved.

= RIS id: RIS identifier to select the target RIS.
o Get energy consumption, which will obtain the energy consumed by the RIS in a given time
interval. Thus, the parameter required will be:

= time_lapse: time lapse to be used to calculate the energy consumed by the RIS

[SNS-JU-101097083] 41



D4.2 — Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and Al/ML Algorithms BE

BeGREEN Intelligence Plane

/ BeGREEN Al Engine N\ SMO Framework

AUML Functions

SMO Control
Functions

Non-RT RIC

Datalakes

o1+

Model Training

anr [ h [—
BeGREEN BeGREEN
| =)
RI 1 I 1 I 1
Al SMO

Near-RT RIC

=
BeGREEN Termination, inati
EE xApps Conflict Manager

SToooooooooos

E2+

Functions ions

e e e - - -
E2+ 01+ RIS
v ~ Actstor
L 0-Cloud N ‘

[ 0-CU E}\ 0o [m[m}

‘ oo m|

[ 0-pU B e 0od od

LY J/ ([ ] EE

¢ A / DD EE

N ( O-RU El% Ho
0-RAN interfaces -—
3GPP interfaces -—

BeGREEN newlextended interfaces

Figure 2-25: RIS - Updated RIS-enabled BeGREEN architecture

These procedures will leverage the E2 services defined by O-RAN (i.e., REPORT, INSERT, CONTROL, POLICY
and QUERY) and other E2 support services. However, given that the RIS is not an E2 node, E2SM-SSC and
E2SM-SSM SMs will not have some of the E2SM common IEs that other SMs have [23]. For example, IEs
related to Cell Global ID will not be used, since a RIS device may not be attached to one single cell, but rather
provide service to different cells simultaneously. Similarly, IEs related to Group ID, Core CP, QoS ID, Network
Interface Type, Network Interface Identifier, Network Interface Message ID, Radio Resource Control (RRC)
Message ID, Serving Cell Physical layer Cell Identifier (PCl), Serving Cell Absolute Radio Frequency Channel
Number (ARFCN), Cell Radio Network Temporary Identifier (RNTI) and Partial UE ID will need to be updated
or will not be used. For this reason, we refer to these two implemented SMs as the E2+ interface, which need
to be supported both in the RIS Actuator and in the Near-RT RIC (see RIS Functions module in the Near-RT
RIC). More details on the exact E2 mapping will be provided in later deliverables.

To integrate the RIS Actuator with the Non-RT RIC, the O1 interface will be used [24]. The O1 interface is
based on the NETCONF protocol and uses YANG to model the configuration and data collection commands
required for the interactions. We foresee that, among the main tasks to be performed by the Non-RT RIC,
are the RIS logical split management and codebook optimization/training, since these are tasks be done on
a non-RT time scale. This is mainly because they are usually dependant on barely dynamic aspects such as
the physical location, the number of incumbent operators or the types of QoS classes. The codebook
optimization can be done through the standard policy-based Al interface, which is specifically designed to
send optimized configurations from the Non-RT RIC to the Near-RT RIC. However, the logical split is a
management task that is intended to be performed through the O1 interface.
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To implement a RIS-enabled O1 interface, termed as O1+ in the BeGREEN architecture, both the RIS Actuator
and the 01 Functions module need to implement a simplified RIS YANG model that defines the RIS logical
split rationale (i.e., mapping between RIS_id’s and elements_id’s) and support standard NETCONF operations
such as get, get-config, edit-config, lock, unlock, close-session, kill-session, etc. Again, further details of O1
RIS-enabled configurations will be provided in future deliverables.

2.2.4Relays

The development of Al/ML-based functionalities for relay control leads to the improvement of decisions of
relay deployment, relay activation/deactivation, etc., resulting in a better system performance and an energy
consumption reduction. As introduced in BeGREEN D2.2 [21] and D4.1 [1] these relay functionalities cover
different aspects.

First, BeGREEN considers the identification of periods of time and geographical regions with high traffic
demands and poor propagation conditions (i.e. coverage holes). Another relevant relay functionality is the
identification of the most adequate location for the placement of new relays and their initial configuration
parameters. Moreover, the identification of UEs that can be good candidate RUEs (i.e. UEs with relaying
capabilities that may serve neighbour users with poor propagation conditions with respect to the gNB [5]) is
also considered. Finally, BeGREEN considers the dynamic activation/deactivation of these relays/RUEs.
According to this, relays/RUEs are activated when needed to serve other UEs located in the coverage hole
regions and are deactivated when they are not necessary, with the aim to minimize the energy consumption.

Next subsections detail the integration within the BeGREEN architecture of the main functions needed to
control the relays and to collect the required network measurements.

2.2.4.1 Main functions involved in the relay control

For the implementation of the relay control functionalities, several components are necessary in the
BeGREEN architecture. As shown in Figure 2-26, a Relay Control entity is placed at the SMO. This entity is in
charge of the interaction with the relays for the collection of the network measurements and of the relay
reconfigurations through an extended O1 interface., This interface is denoted as Ol1+ in the BeGREEN
architecture, since as in the RIS case, BeGREEN will require of new YANG models to represent the relay
configuration and functions. In turn, as shown in Figure 2-26, gNB measurements are sent to the SMO
through the O1 interface.

The considered relay control functionalities are sustained by different rApps placed in the Non-RT RIC. In
particular, the data collection rApp manages the different processes related to the collection of
measurements. Moreover, the Relay Function Management (RFM) rApp, is in charge of the coordination and
management of all the functionalities related to the control of the relays. This RFM rApp decides when and
where each of these relay control functionalities is executed. These functionalities are sustained by means
of Al/ML models hosted in the Al Engine (i.e., as shown in Figure 2-26, CHD, Fixed Relay Placement, Candidate
RUE Identification and Relay Activation). These Al/ML models make use of collected information stored in
the Al Engine datalakes. Additionally, as introduced in section 2.1, the BeGREEN project introduces the
concept of AIA rApps. These specific rApps cover different aspects such as model inference exposure, data
pre-processing, performance monitoring of the Al/ML models and determining the necessity of model
updates or model retraining. The proposed solution considers a different AIA rApp for each of the proposed
relay-related Al/ML models. A brief description of these processes and functionalities is presented in the
following paragraphs, while the different workflows and algorithms are detailed in section 3.4.
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Figure 2-26: Relay Control - Main functionalities involved

On the one hand, the relay control at the SMO and several rApps in the Non-RT RIC are involved in the
processes of network monitoring and measurement collection (see details of these processes in section
2.2.4.2). On the other hand, the RFM rApp in the Non-RT RIC triggers the different relay control
functionalities. Concerning the CHD process, it makes use of a set of collected measurements with the aim
to identify geographical regions with large traffic demands and poor coverage. For this purpose, a clustering
process is executed in the Al Engine. The result of this process is a characterization of the coverage holes
identified in each cell. This characterization is stored in the Coverage Hole Database as shown in Figure 2-26.
More details of the CHD process can be found in section 3.4.1. After the identification of a coverage hole,
the RFM rApp will decide the most adequate solution to address the problems in the detected coverage hole.

One possible solution is the use of RUEs; for this purpose, the RFM rApp may trigger the process of Candidate
RUE Identification. In general, UEs with good propagation conditions with its associated BS, a static/semi-
static mobility pattern, a periodical and predictable space-time location and large session durations, may be
good candidates to become RUE. The list and characterization of candidate RUEs for each coverage hole is
stored in the Relay Database (see Figure 2-26).

Another possible solution to address a specific coverage hole is the placement of a fixed relay. In this case,
the RFM rApp may trigger the Fixed Relay Placement functionality to determine an adequate geographical
location to place a new relay and its initial configuration parameters. In case a new fixed relay is deployed,
the configuration parameters of this new relay are stored in the Relay Database.

With the aim of improving the system performance at the coverage holes and reduce the overall energy
consumption, both fixed relays and RUEs are dynamically activated/deactivated depending on the number
of users in their surroundings. To do this, the Relay Activation/Deactivation process makes use of recently
collected measurements and information related to the relays status, available at the Relay Database. This
information is used as input for the Relay Activation/Deactivation process that makes use of a trained model
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to take adequate relay activation/deactivation decisions (see details in section 3.4.4).

2.2.4.2 Collection of network measurements

Figure 2-27 presents the process of the collection of network measurements. As shown in step 1, a
continuous network monitoring process is run at each gNB to identify cells that require the activation of
some of the proposed relay control functionalities. By means of performance counters, each gNB keeps track
of metrics such as the number of attempted calls, number of successful connections, number of call
droppings, etc. Relevant metrics for the identification of cells with bad performance are described in [25][26].

The metrics used for this purpose in the proposed approach are described in [25] as follows:

1. Number of DRBs successfully setup (DRB.EstabSucc.5Ql): This measurement provides the number of
Data Radio Bearers (DRBs) successfully established in a specific cell. Each DRB that was successfully
setup to the UE increments the corresponding sub-counter by 1 per mapped 5G QoS Identifier (5Ql).

2. Number of released active DRBs (DRB.RelActNbr.5Ql): This measurement provides the number of
abnormally released DRBs that were active at the time of release. DRBs with bursty flow are seen as
being active if there is user data in the Packet Data Convergence Protocol (PDCP) queue in any of the
directions or if any DRB data on a Data Radio Bearer has been transferred during the last 100 ms.
DRBs with continuous flow are seen as active DRBs in the context of this measurement, as long as
the UE is in RRC connected state. The measurement is split into sub-counters per mapped 5Ql.

According to the previous metrics, the proposed approach considers the drop call rate as a metric to decide
the activation of some of the relay control functionalities for a specific gNB. The drop call rate can be
measured as the number of call droppings divided by the number of attempted calls in a specific gNB during
certain period of time Tarop_eval, according to:

DRB __ YXxDRB.RelActNbr.5Q1_x
drop_rate — y pRB.EstabSucc.5Q1_x’

where x represents each of the 5Ql level identifier. With a periodicity Tarop evai, the drop call rate is computed
in all the gNBs in the network. Alternatively, cell droppings can also be measured by means of the
retainability that computes the number of DRBs abnormally released divided by the aggregated DRB active
session time for each mapped 5Ql [26].

In the case that a drop call rate is higher than certain a given threshold in a particular gNB, the Relay control
at the SMO activates a process to collect more specific measurements in the coverage region of this gNB to
carry out a deeper analysis of the source of the identified problems (step 2-3). For this purpose, an accurate
coverage and space/time traffic characterisation is essential to take adequate decisions of relay placement,
relay activation/deactivation, etc. For this reason, the collected measurements that provide this space/time
characterisation need to be associated with the timestamp and UE geo-location information where the
measurement was taken. According to this, the proposed approach is based on the Minimization of Drive
Tests (MDTs) feature [27]. MDT reports consist of periodical UE measurements including the measurement
location (i.e. latitude, longitude, altitude), RSRP, RSRQ, and Signal to Interference and Noise Ratio (SINR)
values of the serving and neighbour BSs. It also contains information of the Channel Quality Indicator (CQl).

As shown in step 4 in Figure 2-27, the relay control at the SMO sends a command to activate and configure
the process of collection of MDT measurements for the gNBs with a drop call rate higher than the established
threshold. Then, when a UE with MDT capabilities and MDT consent establishes a RRC connection with one
of these gNBs, the network sends a measurement configuration message to the UE with the configuration
parameters of the MDT. This configuration message contains information about how the measurement
collection and logging is triggered, information about the list of measurements to be collected, and the MDT
deactivation condition. In the proposed approach, UEs are configured to collect and send MDT
measurements with a periodicity Twvior periodicity-
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Figure 2-27: Relay Control - Workflow of the collection of network measurements.

Coverage holes can be identified by observing a low value of RSRP of the serving and neighbour cells,
together with the geo-location coordinates — obtained via Global Navigation Satellite System (GNSS) or by
means of RF fingerprint — and a relative time stamp. Geo-located measurements collected from UEs in
RRC_connected state are transmitted periodically to the network (with periodicity Thvor periodicity)- In turn, UEs
in RRC idle or RRC inactive state can log measurements and transmit them later when the UE enters in
RRC_connected state. The measurements collection and logging is done until the UE leaves the current cell.
Collected MDT measurements are stored in an MDT database (step 5). After certain established period of
MDT measurements collection Twipr colection period, the MDT process is deactivated in the corresponding cell.
Finally, the collected MDT measurements are filtered and processed by a data collection assist rApp (step 6)
and stored in the measurements datalake in the Al Engine (see step 7-8 in Figure 2-27).

2.3 Integration with BeGREEN Edge domain

As was introduced in Section 2.2.2, the management of resources in the O-Cloud is a responsibility of the
FOCOM component, located in the SMO, and the IMS, located in the O-Cloud [20]. Both components are
connected through the 02-IMS interface, which basically exposes IMS services to the FOCOM component,
concretely: inventory, monitoring, provisioning, software management and Life Cycle Management (LCM).

According to the different possible O-RAN deployment scenarios [28], and due to O-RAN disaggregated and
virtualized features, the edge domain can be considered to contain components of the O-Cloud or of the
Near-RT RIC. While the BeGREEN approach to manage O-Cloud or vVRAN energy savings was already
introduced in section 2.2.2, the interested reader can also refer to BeGREEN D3.2 [15] for a detailed
description of hardware acceleration approaches to enhance the energy efficiency of O-Cloud and Near-RT
RIC components. This section addresses scenarios where edge resources are allocated to the UPF of the 5G
Core (5GC) and/or to Al-driven applications.

The management of resources in the O-Cloud infrastructure includes two kinds of resources: physical and
logical. In the case of the Edge domain, as will be further described in Sections 3.5 and 3.6, BeGREEN aims at
intelligently managing physical resources, respectively CPUs and GPUs, to enhance the energy efficiency of
UPFs and services. To this end, as was depicted in the main architecture (Figure 2-1), BeGREEN incorporates
the following components to extend the baseline O-RAN architecture:
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e Edge Control Function: Placed in the SMO, it should implement similar functionalities as the FOCOM
component but focused on the resources allocated to non-RAN functions and services.

e Edge Resource Controller: Placed in the Edge, and similarly to IMS, it should expose methods to allow
the monitoring and management of edge resources.

e 02+: Interface used to expose Edge Resource Controller capabilities to the Edge Control Function in
the SMO. Its design should follow similar principles as 02-IMS.

Note that due to the expected low TRL of the BeGREEN solutions, making use of these components (TRL 2 or
3), it is not expected a detailed definition and specification of them within the scope of the project.
Nevertheless, follows a list of the main requirements according to the use cases presented in BeGREEN D4.1
[1] and extended in this deliverable (Sections 3.5 and 3.6):

e Inventory and policies: The Edge Resource Controller shall expose methods to obtain the
characteristics of the server, such as the pool of available resources (e.g. number and type of CPUs,
number and type of GPUs, etc.) or the available energy saving policies (e.g., performance or energy
saving mode, available P-states or C-states, etc.).

e Monitoring: The Edge Resource Controller shall expose status, metrics and alarms, related to the
utilization and availability of resources (e.g., the CPU or GPU load, power and energy consumption,
etc.) allowing consumers (i.e., the Edge Control Function) to subscribe to them through the 02+
interface. Combined with performance metrics of the hosted functions, for instance the data volume
being processed by the CPU, energy related metrics may be used to compute the Energy Score and
Rating of the servers.

e Dynamic management: Functions or policies shall be exposed throughout the 02+ interface to allow
dynamic management of resources, like controlling the allocation of CPU or GPU resources to
specific processes, or their configuration. Non-RT control shall be the minimum time granularity,
although near-RT control could be useful in some use cases (e.g., managing C-states).

Other works from the state-of-the-art have proposed similar approaches to incorporate the management of
resources not dedicated to RAN. For instance, the project Smart-5G from the Open Networking Foundation
(ONF) [29] also targets energy optimisations at the RAN and CN domains. In the ONF approach, the control
of CN resources is decoupled from the SMO and implemented in a different external component, which just
makes use of the RAN telemetry exposed by the SMO.

The unified approach proposed by BeGREEN can enhance the overall energy efficiency by enabling more
holistic optimization strategies. By integrating RAN and non-RAN resource management within the same
rApps, BeGREEN leverages the synergy between different network components, potentially leading to better
resource allocation and utilization. Indeed, the required functions could be easily integrated into a more
general O-Cloud approach, extending the FOCOM, IMS and 02 components to manage the allocation of
resources to RAN, Core and services. This would not only enhance the performance and sustainability of the
network but also ensure that the allocation of resources matches with the dynamic needs of both RAN, CN
and service domains, leading to a more efficient and adaptable network infrastructure. This approach is
aligned with research proposals that aim to converge in the same hardware platform the workloads of 5G
RAN, Core, Al/ML and services [30].
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3 Initial Evaluation of Al/ML-Assisted Procedures to Enhance Energy
Efficiency

This chapter details the BeGREEN Al/ML-assisted procedures to enhance energy efficiency in the RAN and
Edge domains, along with the evaluations performed. First, we extend the description of the methods
reported in BeGREEN D4.1 [1], focusing on the final use cases and the design of the solutions that are being
considered within BeGREEN scope. Secondly, for each of the methods we provide validations of the
algorithms, workflows and/or design principles. Given the varying maturity levels of these solutions, the
scope of the evaluations is heterogeneous and, in some cases, a final evaluation of a specific method or
algorithm is presented, while in others only initial insights or validations are provided.

Section 3.1 deals with the application of dimensionality reduction on ML models to achieve energy efficiency
in the ML services without sacrificing accuracy. The proposed approach is validated with data from real
dataset from an MNO. Section 3.2 addresses the problem of compute resource allocation in vVRANs, which is
also being considered by O-RAN Alliance [3], as presented in Section 2.2.2. A solution based on RL is applied
and validated experimentally, which aims to optimize the allocation of shared compute resources to virtual
BS. Section 3.3 deals with another use case being prioritized by O-RAN [3][31]: 5G carrier/cell on/off
switching. In BeGREEN we consider a realistic NSA scenario based on a real MNO dataset, and we evaluate
strategies performing Al/ML-driven offloading from 5G to 4G Radio Access Technologies (RATSs).

Section 3.4 provides a detailed description of the workflows and algorithms required to implement the
different methods introduced in section 2.2.4, targeting energy efficient relay-enhanced RAN control. An
initial validation of each of the methods is also presented, based on simulative work modelled according to
real measurement campaigns. Section 3.5 deals also with the energy efficient allocation of compute
resources but applied to edge servers hosting the UPF of the 5GC. An experimental characterization of the
energy consumption of a Vector Packet Processor (VPP) and Data Plane Development Kit (DPDK) based UPF
implementation is presented, introducing mechanisms to match traffic demands, compute resources and
energy consumption. Also considering the Edge domain, Section 3.6 addresses the problem of the joint
orchestration of VRANs and Edge Al services. According to the experimental characterization of the
problematic, an Al/ML solution based on a Bayesian online learning algorithm is detailed. Section 3.7
presents the initial validation of the Intelligence Plane implementation, focused on the integration of the Al
Engine and the non-RT RIC, which is built on the demonstration performed at the 2024 EUCNC & 6G Summit.

Finally, Section 3.8 provides a summary of the use cases and the Al/ML methods presented in this chapter,
highlighting the main features and the initial results that have been obtained. Note that this deliverable does
not include an evaluation of the RIS integration into O-RAN, described in section 2.2.3. BeGREEN D4.3 will
provide details about the results on such integration.

3.1 Dimensionality reduction

Traffic volumes in radio networks have increased exponentially over the last decade. Therefore, although
the efficiency of these networks has improved, the continued rise in traffic makes minimizing energy
consumption a critical challenge in the telecommunications industry. To ensure maximum energy efficiency
it is necessary that the configuration of each element in the network is optimal at all times. In this section
dimensionality reduction of input data is considered, which is a technique for reducing the amount of data
that need to be processed to detect entities in the network that are operating with low energy efficiency and
may need reconfiguration.

3.1.1Solution design and use case

An example of the utility of dimensionality reduction is a demonstration of how predictive models can
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maintain high levels of accuracy when trained with datasets with reduced dimensions. Telecommunication
networks typically collect thousands of types of performance data, which represent the operating conditions
of the network. Based on these data, a predictive model that predicts, for instance, the energy consumption
of a cell in a telecommunication network, can generate accurate predictions.

A comparison between the relative accuracy of predictions made with the complete dataset and predictions
made with feature-reduced datasets can be carried out. Accuracy is calculated using the R? coefficient of
determination that measures the model prediction accuracy. The features that are removed from the model
in the feature-reduced datasets are those features where the ‘feature importance’ to the model is lowest.
Feature importance refers to techniques that calculate a score for all the input features for a given model. A
higher ‘feature importance’ indicates that a feature has a larger impact on the model that is being used to
predict a certain variable. Then, an evaluation of the relative processing and data movement/storage costs
involved in training the model can be used to find the optimum balance between predictive accuracy and
costs of making the prediction. The general workflow for applying dimensionality reduction to a predictive
model is shown Figure 3-1.
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Figure 3-1: Dimensionality reduction — workflow
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The decision on increasing or decreasing the number of features is based on the prior setting of an acceptable

accuracy limit (Ta) for the current predictive task, an initial reduction factor (Fr) and the number of iterations

(Ni) of the workflow that should be performed. The setting of Ta will determine the minimum accuracy level

of the dimensionally reduced model that is defined by the workflow. Fr affects the step size with which

iterations of the workflow will approach the ideal balance between accuracy and energy efficiency in terms

of lower number of features. Ni influences how closely the final result of the workflow will match this ideal

balance. Based on experimental results, an Fr of 0.5 (corresponding to halving the dataset with each iteration)
and Ta = 10 iterations of the workflow offers a good trade-off.

The method is generally applicable to predictive models for any metric. In BeGREEN it has been
demonstrated with XGBoost models predicting the energy consumption of a cell, as will be presented in the
next subsection.

3.1.2 Initial evaluation

The results of this comparison are shown in Table 3-1. The first column shows the number of features used
in the predictive model and the second the percentage from the total number. The third column shows the
R? accuracy score of the model, relative to the accuracy of the model using all the features (first row). The
third column shows the number of CPU cycles needed to train the model, relative to the value using all the
features (first row).

The following diagrams show the relationship between the number of features used to generate a prediction
and its accuracy measured by its R? score (Figure 3-2) and the number of CPU cycles used to train the model
that generates that prediction (Figure 3-3).

Table 3-1: Dimensionality Reduction - Example

Number of
% of Features % Max Accuracy % Max CPU Cycles
Features

1100 100% 100.0% 100%
50 5% 99.3% 19%
30 3% 98.8% 17%
20 2% 98.4% 18%
10 1% 95.0% 15%

Number of Features vs R2

10 20 30 50 100 500 1000
Number of Features

Figure 3-2: Dimensionality reduction example - number of features vs accuracy
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Figure 3-3: Dimensionality reduction example — number of features vs CPU cycles

The ‘elbow’ on each graph is visible at 50 features. The loss of predictive accuracy when using 50 features is
0.7% but the prediction can be generated using less than 5% of the data volume and less than 20% of the
CPU cycles. This means that a large proportion of the energy expended in training models, in addition to the
data movement, processing and storage costs associated with this process, can be saved for subsequent
model retraining tasks by applying dimensionality reduction to the feature set used to retrain the models.

In addition to the measuring the decrease in CPU usage that can be achieved with this technique it is also
planned to create a method whereby it is possible to estimate the energy consumption of the models,
dependent on details of the system on which they are executing. It would then be possible to quantify the
energy savings of retraining a model using a dimensionally reduced dataset.

3.2 Compute resource allocation in vRAN

In this section, the problem of compute resource allocation in virtualized RAN under shared computing
infrastructure is addressed. This problem has already been introduced in the previous BeGREEN D4.1 [1],
where the state-of-the-art is discussed and an initial experimental characterization of the problem and an
initial problem formulation are provided. The analysis is built on top of this formulation to design an Al/ML
solution that relies on RL theory. Then, an experimental evaluation of the proposed algorithm analysing the
convergence, the inference time needed to have a practical solution, and its performance with respect to
state-of-the-art benchmarks using realistic traffic traces are provided.

The problem addressed in this deliverable is of paramount importance in mobile networks. Unlike other
setups, the amount of processing power a VRAN system needs can fluctuate significantly. This dynamism
stems from several factors. First, each vBS instance has varying CPU demands depending on the amount of
data flowing in both directions (uplink and downlink), the signal quality between the user and the station,
and the data transmission method employed. On top of that, efficiently allocating resources becomes even
more challenging when multiple vBS instances share the same platform. Here, a delicate balance needs to
be struck. Allocating too much computing power (over-provisioning) leads to wasted energy on idle cores,
while allocating too little (under-provisioning) can cause performance issues. This resource crunch can lead
to problems like data synchronization failures, increased radio errors, and frustrating delays for users.

An ideal scenario would involve dedicating specific processing power to each vBS instance for optimal
performance. However, this approach comes at the cost of keeping more cores active, which translates to
higher energy consumption.

The solution proposed in this deliverable seeks a middle ground. By dynamically adjusting the number of
active cores in a shared pool based on real-time traffic demands, the system can achieve a balance between
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performance and energy efficiency. This approach factors in the impact of sharing resources on the overall
health of the network, ensuring that cost-saving measures do not come at the expense of user experience.

For the future BeGREEN D4.3, the plan is to address this problem from a different angle. Instead of having a
solution that predicts the required computational resources considering interference among processes
(noisy neighbour problem), it is planned to propose a resource allocation algorithm to optimize the resource
utilization and therefore the energy efficiency of the system.

3.2.1Solution design and use case

Following the BeGREEN D4.1 [1], in this section the problem formulation, the system model and the
considered optimization framework are presented. Specifically, the optimization framework relies on RL, in
particular Deep Q-Network (DQN) algorithm[32], enhanced with Relation Networks (RNs) [33] to handle the
variability of the input size. Given the characteristics of the objective problem, the RL framework is
particularized with discount factor y = 0 and episode length T = 0 to a contextual bandit problem. The
design for the learning agent's context (states), actions, and reward function are presented here.

Context:
In line with the related literature [34][35][36], we use the next metrics to describe the state:

e Chanel quality: We use the mean UL Signal to Noise Ratio (SNR) observed by each vBS in the last
interval, which allows our agent to infer their UL wireless capacity, and the mean DL CQl to do the
same for the DL.

e Network demand: The network demand of a vBS is the amount of UE buffered data for both UL and
DL during the last decision interval.

We represent DL and UL channel quality for a vBS instance i observed in interval t as ag?i and Uz(z?,i-

Furthermore, we let dl()tl),,i and d,(JtL)'i

denote its DL and UL network demand, respectively. We also assume a
known mapping between channel quality and MCS: g%i(a,g?i) for DL, gUL(alStL)l) for UL, which is a mild
assumption. Because the channel quality bounds the highest MCS, we can estimate the mean number of
radio Resource Blocks (RBs) that each vBS can use in both directions given a mean MCS and network demand.
This can be estimated using the 3GPP specifications [37]. In this way, we can state the demand for radio
resources (in terms of RBs) rather than relying only on the past utilization of RBs, which may differ.
Consequently, we denote the number of RBs used for DLand UL for vBS i as plpL and piUL, respectively. Using

the number of RBs and network demand, we define the context of vBS i as:

®._(,,®© 40& _© 4
Xp o= (pDL,i' dpLi Py dUL,i)

The design of xi(t) is motivated by the convenience of expressive features and minimal dimensionality and

follows the state-of-the-art [34][35][36]. The challenge now is to encode the context information xi(t) for all
vBS instances i in a state vector s with fixed dimensionality D, which is required by the DQN model, in
scenarios with a variable number of vBS instances over time. As shown in Figure 3-4, we address this with a
RN [32][33].
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Figure 3-4: Resource allocation in vVRAN - proposed ML architecture.

Relation Network (RN):

As the number of vBSs that our solution has to allocate CPU resources for in a particular time interval might
be different than in past intervals, the context length changes depending on the number of vBS instances.
Rather than building other agents for each of the different numbers of vBS cases or padding the various
possible contexts to match a fixed context length, we opted to solve the problem using a RN. ARN can encode
the relationship between the context associated to all vBS instances into a fixed-length state vector s. As
shown in the literature, RN achieve higher performance and require less computational burden compared
to other architectures like multi-layered perceptron (MLPs) [33].

To this end, the RN operates along all possible pairs of objects (context of vBS instances) to capture such
hidden relations with a multi-layer perceptron model. Assuming a maximum number of vBS instances
supported in the system equal to M, then we have the following possible pairs of context vectors:

X = {(x1,x3), (x1,%3), .. (Xpg—1, X00)}

Since the maximum amount of vBS instances at any given moment is bounded, then | X| is also bounded and
fixed over time. The RN ingests sequentially each pair (xi,xj) € X of possible unpermuted context
combinations and generates an output vector z; ; with cardinality D. Once all (1;’) permutation vectors z; ;

are computed by the RN, which is done sequentially, we create an encoded state vector s by aggregating all
output vectors, i.e, s = ¥; ;7 ;.

In this way, we force order permutation invariance, which is a critical requirement of our problem, i.e., as
the RN learns about different latent relations across vBS instances (objects), these learned relations remain
invariant regardless the order of the input pair relations. Importantly, our RN not only helps to support
variable number of vBS instances over time, but it also provides the DQN model with state information that
represents better the relations between them, which is very helpful to capture the impact of the noisy
neighbours problem in a state dimension-fixed representation. To this end, we train the RN network jointly
with the DQN model as we explain later.

Actions:

Given state s, our agent shall activate the appropriate set of CPU cores, described with an activation vector
v wherein each element corresponds to the CPU core index that shall be activated. Then, all the vBS
instances will fairly share the pool of CPU cores in v. By avoiding pinning vBS workloads into specific cores,
we aim at maximizing resource multiplexing and, consequently, at reducing the overall usage of computing
resources. To ensure quick convergence, we need to preserve a low action space dimensionality. To address
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this, we resolve our action into two steps. In step 1, our RL agent decides the total number of CPU cores that
shall be activated to guarantee service. Thus, the set of actions Ais A = {1, 2, ... ,2N}, where N is the total
number of physical cores available. Then, in step 2, we implement a deterministic rule p(a) to minimize
infrastructure cost. Thatis p : A = V., whereV, is a set containing all possible activation vectors such that
a = |v|. Because p is a pre-determined rule to minimize cost, the agent can learn its policy 7 to guarantee
service given p as part of the environment £.

See, e.g., the General-Purpose Processor (GPP) of Figure 3-5 with N=2. If a=1 then V,_; =
{(0),(1),(2),(3)} all the activation vectors in V,_, are equivalent and any v € V,_; could be chosen
trivially. However, this is not necessarily the case for other actions $a$ because, as we explained before,
modern processors leverage multi-processing CPUs, being two virtual cores for each physical CPU the most
common case. For instance, for a = 2 (and the same GPP with N = 2), the set of possible activation vectors
is Vo= =1{(0,2),(1,3),(0,1),(0,3),(1,2),(1,3)}. Though many of the vectors in V,_, are equivalent,
others are not. Subset 171,(1:2 = {(0,2),(1,3)} € V,_, contains equivalent activation vectors; and so are
the activation vectors 172,a=2 =1{(2,3),(0,1),(0,3),(1,2)} € V,_,. But any v; € 171,(1:2 and any v, €
17161:2 are not equivalent. On the one hand, any v; € 171,(1:2 incurs more cache contention than any v, €
17161:2 because all the cores in v; share the same physical CPU.

On the other hand, any v, € 172,,1=2 is more costly than any v; € ﬁl,a:Z because v, allows turning off more
physical CPUs, e.g., if v; = (0,2) CPU 1 can be turned off (see Figure 3-5). Figure 3-6 illustrates an example
of the operation of our algorithm during three-time steps. Importantly, give a pool of activated CPU cores,
all vBS instances will fairly use those cores using a standard scheduler.

In the assumption that, given any static mapping p, policy m will provide an appropriate cardinality for the
activation vector to guarantee network service (a = |v|), we just need to design p aiming to minimize the
amount of infrastructure (physical CPUs) that has to be activated given a. Consequently, we propose the
following simple rule. Let k(v) € {1,2, ..., N} denote the number of physical CPUs that contain at least one
virtual core activated in v. Then, given a set V, with all possible activation vectors for action a, we define
the ordered superset W,: = (Vy 4, ..., Vy o), where U, ; = {v|k(v) = 1,v € V,}. In the example above, with
a=2andN =2, W,:= (ﬁmzz, 172,a:2). Note that ﬁi,a = () for some i. For instance, in our toy example
with N = 2,V; 43 = @ for a = 3. Hence, we let p(a) = v € Vp, 4 such that m := argmin,; {i|V,, # 0}.

el — L3 cache

A il || L1/L2 cache
N — — — ||« = — = 7||177 Physical Core
c——==5le———»

I I 1

LR [ | —

CPU #0 CPU#1

NUMA Core #0

Figure 3-5: Resource allocation in vRAN - simplified example of a GPP

t=1i t=i+1 t=i+2
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Figure 3-6: Resource allocation in vRAN - example of a sequence of actions from the proposed method
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Reward:

Our goal is to meet the traffic demand of all the vBS deployed in the system over time with minimum physical
infrastructure (to save costs by turning off CPUs). Assuming a pool with N physical CPUs and 2N virtual cores,
where cores j and j + N belong to the same physical CPU Vj < N, welet z(j) € {0, ...,2N — 1} denote the
sibling virtual core i given input virtual core j. A sibling core is that that uses the same physical CPU. For
instance, in the toy GPP of Figure 3-5, with N = 2 physical CPUs and 4 cores z(0) = 2 and z(2) = 0.

Following the related literature [38][39], we codify the cost associated to an activation vector v using a linear

model. Let us first denote cj(t) € [0,1], as the relative usage of computing core j duringinterval t.If j & v®,
then cj(t) = 0; otherwise, c]-(t) is empirically measured. Then, we let Ej(t) model the (energy-related) cost

associated with computing core j € {0,1,...,2N — 1} as follows:

—

oy + 13- (‘g-t) if () >0

—t

Eﬁt) =4 Q2 if ccjt) = () and ccit()j) >0
Qg if c.-g.t) = () and c.'g%) =0

where a; > a, > az. Intuitively, a; models the bias cost of a core, which is different depending on the
activation state of core j and its sibling. We choose ¢; and f sothat 0 < E; < 1.

() ®
DL, UL,i
formalize our reward function as:

We now let 7,7 . and 7,,; ; denote the DL/UL throughput experienced by vBS i during interval t, and then

-1, if TS)L,Z‘ < dg)Lj for any i
rt).— -1, if ngj < dg)m for any 7
o 2350—1 —E;, otherwise

Algorithm training:

As explained above, the goal is to train a policy to approximate an optimal action-value function Q*. Our
policy  is implemented by the structure of RN+DQN introduced above and, hence, we shall optimize the
weights 0 := (0,,6,) of the combined neural networks to estimate the Q-value function Q(s,a;0) =
Q*(s,a). To this end, we use a Smooth L1-loss function [40]:

1z .
-1 otherwise

B
b=

where x = ]E(s,a,r,s’)~p[(3’i - Q(s,;0))] and y; = 1 + ¥ max e+ Q(s’,a(t+1);@i_1). p is a replay
buffer from where we sample (s,a,r,s’), y; is the temporal difference target, and y; — Q is the temporal
difference error. We use a target network to stabilize the training process, that is, the learning agent uses a
different target network with fixed weights that are used to compute the loss function used in turn to train
the primary Q -network. It is crucial to stress that the target network's parameters are periodically
synchronized with those of the primary Q-network rather than being trained. The primary Q-network is
trained using the target network's Q values in an effort to increase the training's stability. Finally, we use a
standard e-greedy approach for exploration.
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3.2.2 Experimental evaluation

We have built an O-RAN-compliant experimental testbed to evaluate our solution. The testbed comprises
different hosts, which contain the components of an O-RAN deployment and the ones to provide network
connectivity to different connected UEs. Figure 3-7 depicts conceptually the testbed that we have built.

First, this testbed has a host, which deploys the SMO and contains the Non-RT RIC where we deploy the AIRIC
rApp @ [1]. Second, it has a separate server that hosts the O-Cloud platform where different O-eNB
instances can be deployed and also comprises the Near-RT RIC @ To implement the orchestration and
management functions of the O-Cloud platform provided by the SMO, we have opted to implement the O-
eNBs deployed in the O-Cloud platform, containerizing srsRAN?® using Docker. Thus, we use Docker API
capabilities to orchestrate and manage containers to implement a minimal O2 interface. In addition, we used
a metrics agent as Telegraf® to implement the performance monitoring jobs, which allowed us to gather
metrics from the O-Cloud platform. Rather than using a commercial orchestrator such as Kubernetes or
Docker swarm, we implemented our minimal orchestrator for performance and flexibility. Moreover, we
have also implemented minimal O1 and E2 interfaces to allocate resources on the vBSs deployed. Our
testbed also includes a host, which contains the Evolved Packet Core (EPC) to provide connectivity to the
different UEs attached to each vBS @ As the vBSs are containerized using Docker, we have isolated the
networking from each one another.

The O-Cloud host comprises an Intel i7-7700K GPP with 4 physical CPUs. We use Ubuntu 20.04.5 LTS with
kernel 5.13.19. We reserve 1 physical CPU (2 virtual cores) for the OS and custom scripts to manage the
experiments, interact with Docker API, and collect data, i.e., we emulate a small GPP vRAN platform with
N = 2 physical CPUs and 4 virtual cores (as in). The testbed also integrates 4 USRP SDR boards to support up
to 4 vBS (and the corresponding UEs to generate network load) @ To generate uplink and downlink flows,
we use mgen'® to initiate a flow from/to the UE to/from the EPC. Given the constrained computing capacity
of our testbed, we set the bandwidth of each vBS to 10 MHz. We have generated 60000 context-action-
reward data samples, evenly split for scenarios with 2, 3 and 4 vBS instances operating concurrently. We
shuffled and split the dataset into a training and a testing set of 40k and 20k samples, respectively.

- A
@ o-Cloud @D  service Management

- and Orchestrator (SMO)

— @ R el ettty
_ Virtual vBS Instances I
-!- : [:] : | | | | : O-cloud AL
=== | (vesli(ves){(ves)---{(ves) | || monitoring &
1 2 3 N Orchestration g
[ Non-RT RIC AIRIC ]

S i ———

o — -I Push computing policies I

core #0 ||core #1||core #2|] core #3
d

l_l - ! - ——
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|—| — — - - o] —
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USRP B210 ==
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core #4 ||co re #5| |core #6|f core #7
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Figure 3-7: Resource allocation in vVRAN - Conceptual design of the evaluation testbed

8 https://www.srslte.com/
9 https://www.influxdata.com/time-series-platform/telegraf/
10 https://github.com/USNavalResearchLaboratory/mgen
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Figure 3-8: Resource allocation in VRAN - convergence evaluation with randomized contexts (left) and an
incremental number of vBS (right).

We have implemented our solution using PyTorch . On the one hand, the RN has one hidden layer and the
same number of neurons than the output layer, 128. On the other hand, the DQN has one hidden layer with
256 neurons. The initial parameters of the neural networks are initialized from a uniform distribution. We
also use the Rectified Linear Unit (ReLU) activation function, and a normalization layer [41] in between
hidden layers. For the e-greedy mechanism, we use a decay factor equal to 60% of the size of the training
set.

We also use a replay buffer with 20k samples and batches of 128 samples. Finally, we used Adam [42] as our
optimizer. These implementation choices are intended to stabilize training based on [41][43].

3.2.2.1 Convergence evaluation

We start evaluating convergence. Figure 3-8 shows the normalized reward of AIRIC over training iterations.
The UL/DL load and SNR generated in both plots are chosen uniformly at random. However, while the
number of vBS instances is also random (between 2 and 4) in Figure 3-8 (left), they arrive sequentially in
Figure 3-8 (right). In the former case, the reward converges to 0.95 in less than 5k iterations. In the latter
case, there are expected bumps when new vBSs arrive, but these are small, within 5%. Hence, we conclude
that the RN in our proposal correctly learns the relationship across vBSs and how to use its experience to
quickly reach close-to-optimal performance.

3.2.2.2 Inference time evaluation

To assess whether our solution is suitable for running in a Non-RT RIC controller, we measured the inference
time of our approach for the different number of vBS cases. The results depicted in Figure 3-9 show inference
times lower than 1 millisecond (ms) for all cases, which is well below the control-loop cycle of a RIC controller
and validates AIRIC to operate therein appropriately.

m H H
E 0.80 11—
u [ N I P
£ 0.79 i
R
A e s t
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Inference

2vBSs 3 vBSs 4 vBSs

Figure 3-9: Resource allocation in vVRAN - Inference time

11 http://www.pytorch.org
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3.2.2.3 Performance benchmark

To better understand the effectiveness of our solution, we now compare our solution against a Single
Instance Resource Allocation (SIRA) approach. SIRA is purposely designed to orchestrate optimal resources
across VBS instances under the assumption of full computing isolation between instances. Consequently,
SIRA represents upper bounds attainable by existing works on vVRAN CPU orchestration such as [34] [44].

To evaluate AIRIC, at every interval we choose uniformly at random the number of vBS instances, their DL/UL
load and their DL/UL SNR and use both approaches (AIRIC and SIRA) to optimize the allocation of computing
resources dynamically. In the case of SIRA, we use different (previously trained) models depending on the
number of instances. For comparison, we also depict the performance of an oracle, labelled as “Optimal”,
that finds the optimal action offline by exhaustive search.

Figure 3-10 depicts the distribution of the normalized aggregate throughput performance of the system (top),
the CPU assignments (middle), and the distribution of the reward achieved (bottom), for all the approaches
conditioned to the presence of 2 (left), 3 (middle) and 4 (right) vBS instances. Conversely, Figure 3-11 depicts
the absolute (left y-axis) and relative (right y-axis) power consumption savings achieved by all three
approaches. These savings are in comparison to the power consumed when the default Linux scheduler
manages all available CPU cores in the system, as indicated on the x-axis. The box plots represent the 25
and 75™ percentiles (edges of the box), the median (line within the box), and the 5" -95™ percentiles (error
bars). We make three observations: the first observation is that AIRIC provides substantial savings,
comparable to the optimal benchmark. Perhaps surprisingly, SIRA shows mildly higher savings in some cases,
which leads to our second observation: the savings provided by SIRA come at a huge price in throughput
performance, as shown by Figure 3-10. This is worse for denser scenarios: with 4 vBSs, SIRA barely saves 7%
computing resources more than AIRIC in average but incurs 50% throughput loss in exchange. This is due to
the fact that SIRA ignores the additional computing overhead caused by the noisy neighbour problem and
often under-allocates resources, leading to PHY violations and throughput loss. The final observation is that
AIRIC provides a throughput performance that is remarkably close to that of “Optimal”.

[ OptimaI—AIRIC—SIRA]
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v _-ﬁ.—-l_--—l--—- - __m.l—- I-4"I
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Normalized Throughput Normalized Throughput Normalized Throughput
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Figure 3-10: Resource allocation in vRAN - performance benchmarking
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Figure 3-12: Resource allocation in vRAN - realistic load traces

Moreover, Figure 3-10 (bottom) confirms that the reward distribution attained by AIRIC is very close to the
provided by the optimal oracle. These observations validate the design.

3.2.2.4 Realistic context traces

We finally test AIRIC with realistic context dynamics. To this end, we have generated context profiles for 4
different vBS instances, implementing network slices with different context profiles, during 5 straight days.
Figure 3-12 shows the time evolution of both DL and UL network load for these 4 traces. Slice 1 emulates the
behavior of one eMBB VvBS in the city center, with common diurnal load patterns. Slice 2 emulates a vBS
serving an office building, with a peak load during office hours (9h - 17h). Both context dynamics are adapted
from those in [35]. Slice 3 and 4, in turn, emulate loT-serving vBSs with constant loads when they are
operative.

Figure 3-13 depicts the distribution of the throughput performance (left) and the computing resource savings
(right) of AIRIC, SIRA and the optimal oracle. Like before, SIRA provides around 5% higher CPU savings in
average but incurs almost 25% throughput loss over the 5 days consequently. Conversely, AIRIC performs
very closely to the oracle, with no throughput loss and around 17% overall computing resource savings,
which validates AIRIC for realistic scenarios.
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Figure 3-13: Resource allocation in vRAN - Dynamic context profiles based on realistic traces.
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3.3 AI/ML and data-driven strategies for energy-efficient 5G carrier on/off
switching

Energy-efficient control of RUs by switching cells on and off is a key use case in O-RAN's energy-saving
optimizations [3], as these components significantly impact the network's overall energy consumption. As
was introduced in [1], the strategy defined in BeGREEN is motivated by the analysis of a real measurement
dataset from a Spanish MNO, which contains data from 2G, 3G, 4G, and 5G cells. In this initial analysis, we
found a clear correlation between 5G load and energy consumption, and between both KPIs and time (e.g.,
time of day and day of the week), what opens the door to the definition of non-RT intelligent on/off strategies
driven by ML-based predictors. In particular, due to the reported low load of 4G and 5G cells during off-peak
hours, we considered a use case based on switching on/off 5G carriers and offloading the traffic to the 4G
carriers in the same site and sector.

In following sections, we provide an analysis of the energy saving opportunities and gains, the possible
impact on cell and UE performance, and the initial validation of selected on/off strategies. The analysis and
validation are mainly focused on the data of a specific urban and high loaded cell. However, in BeGREEN D4.3
we will report a more general analysis based on different types or groups of cells (e.g., urban and suburban).
In addition, we will evaluate the designed Al/ML and data-driven strategies and provide the final solution
design. Note that the final objective is to implement this solution in the Intelligence Plane and use it to
validate its design. Indeed, Section 3.7 provides initial results related to the demonstration done at the 2024
EuCNC & 6G Summit.

3.3.1Solution design

As mentioned, we have access to two complete months of data from several sites that extend through urban
and suburban zones located in a specific Spanish region. Concretely, the number of sites is 70, and each of
them has three sectors accounting for a total amount of 210 cells. The list of KPIs is around 1300 for 4G and
around 670 for 5G. The granularity of the dataset is of 15 minutes, so most of the KPIs in the list are average
values over an interval of 15 minutes. These KPIs are available for the following 5G and 4G carriers:

- 4G carriers: 700 MHz, 800 MHz, 1800 MHz, 2100 MHz and 2600 MHz.
- 5G carriers: 700 MHz, 2100 MHz and 3500 MHz.

It is worth mentioning that the 700 MHz and 2100 MHz carriers of the 4G and 5G technologies are deployed
in Dynamic Spectrum Sharing (DSS) mode and, therefore, share bandwidth and radio equipment. The
bandwidth for the DSS carriers and the 4G 800 MHz carrier is equal to 10 MHz. The 4G 1800 and 2600 carriers
have 20 MHz bandwidth, and the 3500 MHz 5G carrier has 100 MHz of bandwidth.
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Figure 3-14: 5G carrier on/off - average of the aggregated energy consumption per day and site: 3500 MHz
carrier vs rest of the carriers
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As has been introduced, the considered energy saving approach is based on switching off the 3500 MHz 5G
carrier whenever its traffic can be offloaded to the 4G carriers in the same sector. This approach provides
two main benefits. First, it increases the energy efficiency of the 4G carriers by increasing the utilization of
available resources. Second, and most importantly, it reduces the overall energy consumption in the network
by switching off the 5G carriers when they are under low load. Indeed, as can be concluded from the analysis
of the dataset, the 3500 MHz 5G carrier is the one consuming the most energy. Indeed, the aggregated
energy consumption per day and site is almost comparable to the consumption of the rest of the carriers on
average, as depicted in Figure 3-14. The data dispersion is due to the different configuration of the available
sites, which have a variable number of carriers and sectors.

In addition to the aggregated energy consumption per day, the dataset also reports the aggregated energy
consumption of the three sectors of the 3500 MHz 5G carrier in each of the sites (Wh, each 15 minutes). This
KPI allowed us to learn the trend of the energy consumption at different timescales (days, weeks, and months)
and how it was correlated with the average load of the three sectors (percentage of occupied PRBs). As
depicted in Figure 3-15, the correlation is evident. Additionally, it clearly illustrates the influence of baseline
energy consumption on the overall KPI value, as the variation due to load ranges only from 400 Wh to 550
Wh. This indicates that baseline consumption is significantly higher than the variation in energy due to traffic
demand. Therefore, the impact of on/off switching strategies on energy savings will be very notable.

Once established the objective and the potential benefits of the envisioned strategy, we focused on
evaluating how many opportunities are available in terms of traffic offloading, i.e., the percentage of time
that a 5G carrier could be switched off and its traffic offloaded to the 4G sectors. To do so, we considered a
specific site, which is found on an urban zone of a big Spanish city. We have chosen this site because its high
traffic demand, what means it could be considered a worst-case scenario, i.e., a scenario with a low number
of opportunities to save energy. Figure 3-16 and Figure 3-17 show, respectively, the load pattern of the 5G
carrier and the aggregated 4G carriers of a specific sector of this site, during a week. Note that the 4G plot
shows the aggregated traffic pattern, which has been calculated as the demand on all the 4G carriers over
the sum of total resources of those carriers.

According to these KPIs, for each instant of time, we can evaluate if the 5G load can be offloaded to the 4G
carriers. To achieve this, we first need to compute an equivalent PRB value or occupation for all the bands
and technologies, by considering:

e The bandwidth of the carriers, i.e. 100 MHz in the case of 3500 MHz carrier versus 10MHz or 20MHz
of 4G carriers. This translates into a higher number of available PRBs in the case of 5G.

e Sub Carrier Spacing (SCS) of the technologies, i.e. 30 kHz of 5G versus 15kHz in the case of 4G. This
translates into half shorter slot duration in the case of 5G.

e Duplexing techniques of the technologies, i.e. TDD with a pattern of DDDSU in the case of 5G and
Frequency Division Duplex (FDD) in the case of 4G. This translates in a lower efficiency of 0.6 for the
downlink direction in the case of 5G.

According to these considerations, we can compute a number of PRBs per millisecond (ms) as follows:

10 MHz 1 PRBs
e 4G 700 MHz, 800 MHz, 2100 MHz: 5 TS X —— = 50 —=
20 MHz 1 PRBs
e 4G 1800 MHZ, 2600 MHz: = TS X —— =100~
100 MHz 1 ~ PRBs
e 5G 3500 MHz: o 1T X 0.6 X —— = 330——
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Figure 3-18: 5G carrier on/off - Traffic offloading opportunities — Example
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Once obtained the equivalence between 5G PRBs and 4G PRBs, we can analyse, according to the carrier
utilisation reported in the dataset, the energy saving opportunities that are available when applying the
traffic offloading strategy.

Figure 3-18 exemplifies this strategy for a specific site, sector and week of the dataset. The aggregated
demand depicts the percentage of 4G resources occupied when considering the sum of 4G and 5G carrier
loads, once computed the PRB equivalence. Whenever the aggregated load is below 100% it means that the
5G carrier could be switched off without suturing the 4G carriers, whenever it is above 100% the 5G carrier
needs to be active to allocate all the traffic demand. Note also that 4G and 5G traffic demands are indeed
strongly correlated. According to these results, which correspond to a high loaded site, we can expect
numerous energy saving opportunities in a real scenario. Indeed, in this case we have calculated that the
percentage of week time we could switch off the 5G carrier of this sector was around the 56%. We must
recall that these results are for this concrete site and sector, but some other sites found in suburban zones
exhibit lower traffic demand patterns. This would translate into a higher number of energy-saving
opportunities. This analysis will be reported in BeGREEN D4.3.

Although the benefits in terms of energy consumption and efficiency of this offloading strategy are clear, the
impact on the QoS needs also to be considered. First, depending on how this strategy is implemented, it will
be more prone to wrong decisions leading to the saturation of the 4G carriers, and which might cause that
the offloaded data volume cannot be entirely allocated. More conservative safety margins or thresholds in
the 4G carriers might be used to minimize the probability of this condition to occur, but this would also
decrease energy savings. In section 3.3.2.3 we will analyse how different strategies, e.g. based on daytime,
load thresholds or traffic predictions, perform in terms of energy consumption reduction and 4G carrier
saturation. On the other hand, even in non-saturated cases, traffic offloading from 5G to 4G will imply a
penalty in the average throughput experienced by the UEs. First, due to the increase of load in the 4G carriers,
UEs using this technology may experience a degradation in their QoS. Figure 3-19 illustrates how the KPIs of
carrier occupancy and average throughput per UE are strongly correlated, leading to lower throughputs
when the load increases.

Figure 3-20 illustrates this correlation for the case of a specific site and two specific 4G and 5G carriers, which
shows a more linear relationship. As future work, we plan to use this data to infere the expected throughput
(and determine the throughput loss) of the 5G UEs when offloading them to 4G cells.

300 A ]

250

200 A

150

100 +

Average throughput per UE (Mbps)

50 A

T
0 20 40 60 80 100
Load %

Figure 3-19: 5G carrier on/off - Correlation between load (% of PRBs) and average throughput per UE KPIs — All 4G
carriers in sites with active 5G carrier
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Figure 3-20: 5G carrier on/off - Correlation between load (% of PRBs) and average throughput per UE KPIs — (a) 5G
3500 MHz Cell and (b) 4G 2600 MHz Cell

Secondly, although we are considering offloading the 5G traffic to the 4G cells in the same sector to minimize
the impact on MCS, due to the different characteristics of 5G and 4G, such as the channel bandwidth, 5G UEs
will experience a reduction of the PHY rate, what will impact their maximum achievable throughput. Figure
3-21 shows the difference between the measured average throughput of 4G and 5G carriers for the same
site and sector that we considered in the previous analysis. As depicted in the figures, the difference is
notable and is indeed higher in low loaded conditions when such traffic offloading strategies will occur.
However, it should be highlighted that the KPI being reflected in the figures, although being denoted as
average throughput per UE, only considers the time to transmit a data burst excluding the data transmitted
in the slot when the buffer is emptied [25]; i.e., it is a measure more related to achievable PHY rate than to
the real average throughput that will experience usual UE applications. Therefore, it should not be used as a
measure of QoS degradation due to traffic offloading.
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Figure 3-21: 5G carrier on/off - Average throughput per UE KPI during a day - 4G (left) and 5G (right).
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The concrete analysis and definition of the QoS penalty, along with how this trade-off will be considered in
the designed energy efficiency strategy, will be detailed in the BeGREEN D4.3. In the following section, we
will present the initial validation of different on/off switching strategies, focusing on the saturation of 4G
carriers as the main negative effect.

3.3.2Initial evaluation

This section introduces the on/off switching strategies that have been considered at this stage of the project,
the motivation behind each of them, and how Al/ML can be used to improve them.

3.3.2.1 Cell energy consumption prediction

Due to the correlation between load and energy consumption shown in Figure 3-15, we first considered the
implementation and validation of an energy consumption predictor with the objective of predicting the
amount of energy savings when switching off specific sectors. To this objective, we trained an XGBoost
Regressor [45], using as input data the load of the sectors and the datetime. XGBoost is a well-known python
library!?, which aims to provide easy-to-use models that can be tuned to fit the objective data. Despite
providing several ML models, we used the XGBRegressor, which is a gradient boosting regressor widely used
to address time series forecasting. Rather than the ML model, one of the key points in the process of
developing the complete solution, was the pre-processing stage. Considering that we have access to data
from several sites, we decided to do a cluster-based training. We selected sites with similar traffic demand
patterns found in an urban area, and then trained a common model with all the data of the selected sites.
Since we had access to two complete months of data, we decided to train the model with 45 days and test
it with 15 days of data. As expected, due to the clear relationship between load and energy, the results were
significantly good. We attained an R? score of 0.97 and a mean absolute error of 5.5 Wh. Figure 3-22 shows
a comparison between real and predicted energy consumption for a specific 5G node during a week.

Additionally, we used the model to get the estimated baseline consumption of the 5G nodes, since this value
was not reported in the dataset. To this end, we used as input a simulated zero-traffic scenario for all the
sectors of the cells, obtaining the following average results:

¢ Node baseline energy consumption: 381 Wh every 15 minutes (1524 Wh per hour).

e Sector baseline energy consumption: 127 Wh every 15 minutes (508 Wh per hour).

These results are aligned with the dataset analysis introduced in the previous section. Unfortunately, in the
case of the 4G carriers we do not have access to energy-related KPIs with a 15 minutes granularity, but only
to aggregated values per day (see Figure 3-14).

Real consumption (blue) vs Predicted consumption (Orange)
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Figure 3-22: 5G carrier on/off - Energy consumption predictor results

12 https://xgboost.readthedocs.io/en/stable/
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This limits our estimation on the energy saved due to traffic offloading, which can be expressed as:
ECsaved = ECSG - AEC4G = ECBSG + AECSG - AEC4G,Where AECSG > AEC4G
ECsaved > ECBSG

where ECg; represents the energy consumed by the 5G carrier, which is composed by the baseline
consumption ECBs; and the consumption due to the actual load AECs;, and AEC,; represents the
consumption due to the load increase in the 4G carriers. As previously introduced, actually we don’t have a
way to estimate or compute AEC,;, which is left for future work. But due to the higher energy consumption
of 5G carriers, we can ensure that the provided energy savings will be at least as much as the baseline
consumption of the 5G carriers.

3.3.2.2 Evaluated strategies

To evaluate different strategies to control the 5G carrier on/off switching, we first considered an optimal
case based on the traffic offloading opportunities analysed in Figure 3-18. In particular, for each instant of
time in the dataset, off decisions were made when the PRBs of the 5G cell could be offloaded to the 4G cell
without leading to saturation. We then used the results of this optimal strategy to benchmark the other
strategies.

First, we defined three simple strategies respectively based on the hour of the day, on the current aggregated
load of the 4G carriers, and on the current load of the 5G carrier being monitored. In the case of the strategies
based on the load, we considered a threshold of 40% to determine if the 5G carriers should be switched on
(load higher than the threshold) or off (load lower than the threshold). This threshold was determined
according to the observation of the 4G and 5G load trends depicted in Figure 3-18.

In addition, we also considered two strategies based on ML models. First, using 5G load predictions instead
of actual load values, aiming at improving the decision-making process of the strategy based on the 5G load.
To this end, an XGBRegressor was trained to predict the future occupancy of 5G carrier sectors. The main
difference between the energy and the load predictors is that the load model is used to predict the carrier
load of the next period of 15 minutes, while in the energy case it estimated the energy consumption of the
past 15 minutes.

We carried out a filtering process of the available KPIs to be used as the model’s input. As reported in the
previous section, the dataset contains hundreds of KPIs, but many of them were not giving any relevant
information to the regressor. After a feature importance analysis, we selected a dozen of KPIs related to the
average throughput, number of UEs, UL and DL load, and datetime. As in the energy case, the model was
trained with the same cluster of cells. The difference in this case is that it was trained with just 20 days and
tested with 10 days (i.e., one complete month). The current load predictor being used attained an R? score
of 0.93 and a mean absolute error of 2.9% (percentage of PRBs). Figure 3-23 shows a comparison between
real and predicted sector occupancy for a specific 5G node during a week.

In addition to the predictor, we also developed a specific Al/ML strategy based on a classifier. The motivation
of this classifier was to take on/off decisions just by considering 5G KPIs, i.e. the 5G load and the number of
connected users, as an alternative to the strategy based on the 5G load predictions. This would eliminate the
need for 4G data to make decisions, thereby saving network resources and enabling the 5G cells to
independently decide when to switch on and off. As introduced in the previous section and illustrated in
Figure 3-18, energy saving opportunities relies on the occupancy of both 4G and 5G carriers, which in this
dataset an are very correlated.

The classifier used was a Logistic-Regressor classifier from the Scikit-Learn python library. This model was
chosen after a selection process, on which several models such as Decision Trees (DTs), Random Forests,
Support Vector Machines (SVMs) etc., were tested.
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Figure 3-23: 5G carrier on/off - 5G carrier load predictor results

Although the SVM provided slightly better accuracy (0.5%-0.75%), it took a lot more to be trained when
compared to the Logistic Regressor, which just took in the order of seconds, leading to a better efficiency.
We also changed the default optimizer to the Newton-Cholesky optimizer which, in the documentation of
the library, appeared as the most appropriate one in those cases in which the number of temporal samples,
N, was much higher than the input features, P. In our case, in the training data, we had N equal to 130.000
(45 days of data with 15 minutes granularity and a cluster of 30 sectors), and P equal to 2 (average number
of RRC connected UEs and average load of the 5G carrier). In fact, changing this optimizer translated into an
increase of the 4%-5% in the final score or accuracy of the model, which was finally equal to 94%.

To generate the model, we trained the classifier in a supervised-learning way, using the decision of the
optimal approach as the ground truth. The classifier was trained with approximately the 70% of the data of
the dataset and tested using the remaining 30% of the data. The penalty of wrong decisions (i.e., incorrect
on or incorrect off status) was the same. We found that most of the errors were in the switch on decision
rather than in the switch off. In the evaluation subsection, it will be shown that this behaviour translates into
a higher number of missed opportunities (i.e., wasted energy), but to a lower number of errors (i.e.,
saturation of 4G carriers). This conservative behaviour was caused by the uncertainty about the 4G load. This
impacted specially cases where the 5G load was high (i.e., peak hours) and the 4G load was not totally
correlated (i.e., lower than expected).

Note that in all cases, we avoided strategies that combine 4G and 5G KPIs. This decision was made to
minimize data requirements and simplify the strategies for evaluation in this first phase. Since these design
choices also impact the system's energy consumption due the need of data sending, storing and processing,
we wanted to first assess whether these simple strategies could achieve significant energy savings.
Nevertheless, in future deliverables we will also consider additional strategies combining 4G and 5G data,
evaluating the trade-off between the energy consumption of the model and the achieved energy savings.

3.3.2.3 Initial evaluation of strategies

In this section, we evaluate different on/off switching strategies according to the data from the
measurements dataset from a specific sector and during a specific week. As previously introduced, we
considered a high loaded site located in the centre of a big city. The evaluated strategies are detailed as
follows:

e Optimal strategy: it knows in advance the load of the cells in each instant and avoids 4G cell
saturation during the off phase. Used to benchmark the other strategies.

e Hour strategy: it switches off the 5G carrier during the night, from 1 AM to 9 AM, and turns it on
during the other hours of the day.
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e 4G load strategy: Reactive decision according to current load. It switches off the 5G carrier whenever
the aggregated load of all the 4G carriers is below the 40%; otherwise, it switches it on.

e 5Gload strategy: Reactive decision according to current load. It switches off the 5G carrier whenever
the 5G carrier load is below the 40 %: otherwise, it switches it on.

e 5G predicted load strategy: Proactive decision based in the load predictor presented in Section
3.3.2.2. Whenever the prediction in the 5G carrier load is below 40% it switches it off; otherwise, it
switches it on.

e Classifier strategy: it directly relies in the decision taken by the classifier introduced in 3.3.2.2, which
relies in the 5G carrier load and the number of connected UEs.

We decided to evaluate the performance of each strategy according to the following metrics obtained from
the dataset. Note that since we are limited by the time granularity of 15 minutes, we consider how each
taken on/off decision in a given time impacted the results of the next 15 minutes period.

e The percentage of correct switch on and switch off decisions in relation to the decision taken by the
optimal strategy.

e Percentage of total time spent in the off state.

e The average saturation in PRBs in the 4G carriers due to wrong switch off decisions (i.e., 5G load
cannot be fully offloaded).

e The aggregated energy consumption saved due to correct switch off decisions (according to total 5G
carrier consumption).

e The aggregated energy consumption wasted due to missing a feasible switch off decision (according
to total 5G carrier consumption).

e The aggregated energy consumption saved due to correct switch off decisions according to baseline
5G carrier consumption.

e The aggregated energy consumption wasted due to missing a feasible switch off decision (according
to baseline 5G carrier consumption).

Table 3-2 summarizes the obtained results and how the different strategies performed compared to optimal
strategy. First, it is remarkable that for all the strategies the amount of energy saved is very significant since
the analysed 5G cell could remain off a significant period of time. Recall that this is for one week and one
sector, and moreover, the data belongs to a high-loaded site in the dataset. Secondly, due to the high
correlation between load and daytime, all strategies behave similarly regarding correct on decisions during
peak times. As expected, the 4G load strategy results in the lowest PRB saturations by considering the load
of the 4G carriers. Regarding off decisions, the hour-based strategy, being more conservative, achieves the
least amount of energy savings. In contrast, the 5G load-based strategy is more aggressive and attains the
highest energy savings for both the actual and predicted load strategies. Finally, since the classifier was
trained to avoid PRB saturations by only considering 5G load, it performed more conservatively, interestingly
yielding results very similar to the 4G load-based strategy.

Table 3-2: 5G carrier on/off - Initial Validation of the 5G Carrier on/off Switching Strategies

Correct Correct Time in Energy Energy Energy Energy
Strategy ON OFF PRB Sat. Saved Wasted Saved Wasted

OFF State
Decisions  Decisions (total) (total) (baseline) (baseline)

Optimal 100% 100% 56.1% 0.0% 217 kWh 0 191 kWh 0
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Hour 96% 64% 36.0% 7.9% 133 kWh 85 kWh 123 kWh 68 kWh
4G Load 99% 85% 47.6% 3.4% 181 kWh 36 kWh 162 kWh 29 kWh
5G Load 98% 91% 51.0% 6.2% 195 kWh 22 kWh 174 kWh 17 kWh
Prediction 99% 91% 51.2% 7.4% 196 kWh 21 kWh 175 kWh 16 kWh
Classifier 99% 83% 46.5% 5.5% 176 kWh 41 kWh 159 kWh 32 kWh

These initial results indicate that simple strategies such as considering the actual 4G or 5G load could lead to
huge benefits. However, we still need to characterize the impact that they will have on the QoS of the 4G
and 5G UEs, what will be the main trade-off to be considered. In addition, these results considered just a
single site, while the behaviour of these strategies in different areas (e.g. suburban and urban) may differ. In
addition to the presented Al/ML-based strategies, other solutions such as combining 4G and 5G KPlIs,
determining the load threshold according to the site and daytime, or predicting the impact on QoS, may help
to optimize the energy efficiency of the network. These aspects will be addressed in future deliverables. Also,
we plan to evaluate the impact of the different Al/ML strategies on the energy consumption of the
Intelligence Plane.

3.4 Al/ML-based algorithmic solutions for relay-enhanced RAN control

This section presents a description of the proposed algorithmic solutions for the different relay control
functionalities described in section 2.2.4. For each of these functionalities, a detailed workflow is presented
to illustrate the interaction of the involved entities of the network. Then, a description of the algorithmic
solution is presented, and an initial evaluation of the proposed algorithms is provided. Section 3.4.1 focuses
on the detection of coverage holes functionality by using a clustering methodology. Then, Section 3.4.2
presents a solution for the placement of fixed relays with the objective of addressing the identified coverage
holes. Section 3.4.3, deals with the identification of UEs that may be good candidates to become RUE and
act as arelay between the gNBs and neighbour UEs that may be located at the coverage holes. Finally, section
3.4.4, proposes a solution for the activation/deactivation of the different relays/RUEs by means of
Reinforcement Learning with the objective of addressing the coverage holes and reducing the overall energy
consumption. Several initial results have been presented for each of the proposed solutions.

3.4.1 Detection of coverage holes

This process aims to identify geographical regions with a relatively high traffic demand and poor coverage.
As depicted in Figure 3-24, it is activated by the RFM rApp in the Non-RT RIC for specific gNBs with a too high
drop call rate (see section 2.2.4.2). Then, the CHD process is executed at the Al Engine. This process collects
the required measurements from the measurements datalake in the Al Engine and executes a clustering
algorithm to identify the geographical location of the coverage holes (see steps 5-6).

Al Engine Non-RT RIC

Coverage hole Meas. Coverage Hole CHD assist RFM Data collection
detection CHD datalake database rApp rApp rApp gNB

1

oop 1. Performange monitoring.

2. Indication of bad performance.
3. Activate Coverage hole detection (CHD
4. Trigger CHD

5.Get MDT measurements

6. Clustering process

7. Coverage hole characterization
8. Notify obtained characterizatjon

9. Notify obtained ¢haracterization

Figure 3-24: Relay control - coverage hole detection workflow
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This clustering algorithm is described in Section 3.4.1.1. The resulting coverage hole characterization is stored
in the coverage hole database located in the Al Engine. Finally, the end of the clustering process is notified
to the RFM rApp (steps 8-9).

3.4.1.1 Coverage hole detection algorithm.

The clustering process described in step 6 in Figure 3-24 is executed in two phases. The first phase aims to
identify geographical regions with potential coverage holes, while the second phase consists of a validation
of the identified coverage holes. A detailed description of the process is presented in the pseudo-code below
(see Algorithm 3-1).

Phase 1: Identification of potential coverage holes

This process analyses the RSRP measurements collected during D days at a specific gNB. These
measurements are available in the Al Engine datalake. In order to do this analysis, the measurements of each
d-th day (with d=1,...,D) are split in N subsets. Each n-th subset (with n=1,...,N) contains the measurements
collected during a period of time Tin the different N periods of the day. Each of these measurements contains
the RSRP value, the time and geographical location of the measurement and the associated serving gNB.
Then, the coverage hole detection process is run iteratively for each n-th period of each d-th day (see lines
1-2 in Algorithm 3-1). In each iteration, the collected measurements are filtered to obtain a list of
measurements with a RSRP lower than a specific threshold Thgsge (see line 3 in Algorithm 3-1). The resulting
set of measurements are used as input for a clustering process which groups the measurements in different
clusters according to their geographical location (see line 4 in Algorithm 3-1). Different clustering
methodologies can be considered, such as K-means, DBSCAN, etc. The proposed approach considers the
DBSCAN methodology. The key idea of this clustering methodology is to identify a group of samples inside a
neighbourhood of radius € with a minimum number of samples min_samples. The considered clustering
methodology is described in BeGREEN D4.1[1]. The output of the clustering process for a given n-th period
in a specific d-th day is a list of I clusters {Cs(d,n),..., Ci(d,n),..., Ci(d,n)} that represent the potential identified
coverage holes. Each i-th cluster Ci(d,n) is characterised with a circle centered at the cluster centroid
Centr(Ci(d,n)) with a radius equal to the cluster radius Rad(Ci(d,n)). This radius is calculated as the distance
between the cluster centroid and the furthest geographical location that belongs to the cluster. Additionally,
a cluster is also characterised with a list of the geographical locations that belong to the cluster and the total
number of measurements associated to the cluster num_meas(Ci(d,n)). Only clusters with a total number of
measurements higher than a threshold Thpum meas are considered as valid (see lines 5-7 in Algorithm 3-1).
After running the clustering process in each of the N periods for all the D days, a list of valid clusters C is
obtained. This list contains all the valid clusters that represent the potential coverage holes that have been
identified with the measurements collected during the D days of measurements.

Algorithm 3-1: Relay Control - Coverage hole detection algorithm

# Phase 1: Identification of potential coverage holes in a specific gNB.

For d=1 with d<D
For n=1 with n<N
Select the geographical locations with RSRP<Thgsgp
Run a clustering process of the selected measurements.

For i=1 with i<I

C <- Ci(n) #Add the identified cluster Ci(n) in the list of all the identified clusters C.

Phase 2: Validation of the identified coverage holes

1

2

3

4

5

6 if num_meas(Ci(d,n)) / T> Thnum_meas
7

#

8 For all i-th clusters in the list C

9

For all j-th clusters (with il=j) in the list C
10 If ajj> Thover[gp
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11 num_times_cluster(i)++
12 Merge cluster i-th and j-th and recalculate cluster centroid, radius and number of measurements.
13 Remove cluster j from the list C

14  For alli-th clusters in the list C
15 Compute repetitiveness = num_times_cluster(i) / (N-D)

16 Build matrix P and identify temporal patterns of the presence of each validated coverage hole.

Phase 2: Coverage hole validation

The validation of the identified potential coverage holes is done by comparing the clustering results obtained
inthe N-D iterations in phase 1. In order to consider a coverage hole as valid, it is necessary that the coverage
hole is detected very frequently in different n-th periods of duration t in the different d-th days. For this
purpose, the algorithm compares the different potential coverage holes available in the list of clusters C.
Two clusters i-th and j-th in the list C are considered to represent the same coverage hole if the overlap a;;
between them is higher than a specific threshold (i.e. a;; >Thoveriap). This overlap a;; can be measured
according to the distance between their centroids and the summation of their cluster radius according to:

dist [centr(Cy),centr(C;)]
rad(Cy)+rad(C;)

ajj=1-

where dist() represents the Euclidean distance, centr(C;) and centr(C;) represent the centroid of cluster C;and
G, and rad(C) and rad(C;) represent the i-th and j-th cluster radius, respectively. According to previous
equation, a;;=1 means a total overlap between clusters i-th and j-th, while a;;<0 means no overlap between
them.

For each i-th cluster in the list C, the algorithm iteratively searches a cluster j-th that satisfies the previous
condition (i.e. a;>Thoveriap) and, in case it is found, the algorithm increases the number of times that cluster
i-th is repeated in the list C (i.e. num_times_cluster(i)++), see line 11. In this case, cluster j-th and cluster j-th
are merged into a single one and cluster j-th is removed from the list C (see line 12-13). The centroid of the
merged cluster is calculated as the midpoint between the centroids of clusters i-th and j-th, and the radius
of the merged cluster is calculated as the averaged radius of clusters i-th and j-th. The number of
measurements associated to the merged cluster is determined as the summation of the values for both i-th
and j-th clusters. After running this process for all the elements in the list C, the parameter
num_times_cluster(i) is useful to represent the number of periods with duration tin which the coverage hole
represented by the j-th cluster has been identified.

As a result, the output of this process is a list of clusters that contains the following items for each validated
coverage hole:

- Coverage hole centre: This corresponds to the geographical location the cluster centroid.
- Coverage hole radius: This corresponds to the radius of the coverage hole.

- Number of measurements associated to each coverage hole: This corresponds to the total number
of measurements that have been obtained in the region of the coverage hole. It allows to represent
the amount of traffic in the coverage hole.

- Repetitiveness: This corresponds to the percentage of time periods with duration tin which the i-th
coverage hole was detected. It is calculated as num_times_cluster(i)/(N-D). A repetitiveness of 100%
corresponds to a coverage hole that is detected in a specific geographical region in all the n-th time
periods of all the D days.

- Coverage hole presence matrix P: This is a NxD matrix where each term p,4=1 if the coverage hole
was detected at the n-th period of the d-th day and pn,s=0 otherwise. This matrix contains
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information about the time periods when the coverage hole was identified and is useful to
characterise the temporal patterns of the presence of the coverage hole.

3.4.1.2 Initial evaluation

The proposed coverage hole detection methodology has been executed in a realistic scenario in a University
Campus in Universitat Politécnica de Catalunya (UPC) [5]. The considered region is a 350 m x 125 m area with
25 buildings of 3 floors. 5G NR coverage on the Campus is provided by three outdoor macrocells of a public
MNO in band n78 (3.3-3.8 GHz). This scenario has been modelled by means of a system level simulator that
models the geographical location of the different buildings and the propagation loss of the transmitted signal
according to [46]. This simulator makes use of real measurements of the time evolution of the number of
users located in different geographical regions [47] . The CHD algorithm has been tested using as input a
collection of D=182 days of measurements. The considered time span for each day is between 8:00h and
22:00h, divided in N=14 time periods of =1 hour. The simulation parameters and the CHD parameters are
presented in Table 3-3.

Table 3-3: Relay Control - Simulation Parameters

Parameter Value Parameter Value

D 182 days min_samples 10

N 14 BS Carrier Frequency 3.7GHz

T 1 hour BS Channel Bandwidth 100MHz

Thgsgre -90dBm BS Transmitter power 35dBm

T, gress 2 BS Transmitted antenna gain 21dB

Thoverlap 0.5 Path loss model UMa - 3GPP TR 38901
€ 10 meters UE antenna gain 3dB

(0,0) (325,0)

(0,125) ' e  (325,125)

Figure 3-25: Relay Control - Validated coverage holes with a repetitiveness higher than 0.25

Table 3-4: Relay Control - Characterization of the Validated Coverage Holes

. CH.1  CH.2 CH_3 CH_4 CH5 | CH6  CH.7
Centroid coordinates [60,44] [77,41] [67,75] | [318,75] | [72,74] | [178,42] | [85,105]
Floor 1 0 1 0 0 0 0
Radius [m] 8.6 8 5.5 9.11 7.13 8.26 5.4
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Repetitiveness ‘ 0.51 ‘ 0.79 ‘ 0.48 ‘ 0.26 | 0.39 ‘ 0.36 ‘ 0.29 |

Figure 3-25 shows a map of the considered scenario with the coverage holes identified with a repetitiveness
higher than 25% after running the CHD process. As shown, seven validated coverage holes have been
identified in different buildings of the Campus.

Table 3-4 illustrates the main coverage hole parameters, namely the centroid coordinates and the floor
where coverage hole is detected (ground floor is represented with 0), the coverage hole radius and the
coverage hole repetitiveness. It is worth noting a very large repetitiveness in coverage hole CH_2. Note also
that coverage holes CH_1 and CH_2 are in the same building but at different floors. A similar situation
happens with CH_3 and CH_5.

To give a more detailed characterization of the identified coverage holes, Figure 3-26 shows different
statistics of the average repetitiveness in different time scales. In particular, Figure 3-26a presents the
average repetitiveness for different hours of the day. As shown, all the coverage holes exhibit a higher
repetitiveness between 10:00h and 14:00h that corresponds to the periods of the day with higher number
of connected users. Figure 3-26b, shows the average repetitiveness observed in different days of the week.
As shown, the coverage holes have a higher presence in the weekdays (i.e. from Monday to Friday) that
correspond to the days with higher number of users. Finally, Figure 3-26c¢, illustrates the average
repetitiveness observed in the different weeks of the dataset. Note that the repetitiveness has a relatively
large variability depending on the considered week. In particular, a low average repetitiveness is observed
in weeks 16 and 17 that correspond to the period of Christmas, when the number of users in the Campus is
low. It is worth noting that coverage hole CH_2 has high repetitiveness in most of the time periods at the
different time scales while the rest of identified coverage holes have higher repetitiveness variability
depending on the considered time period and time scale.

Repetitiveness in different time periods of the day Repetitiveness for the different days of the week
1 1
09 09
08 08
—CH106M —— CH_1 (1,60,44)
07
08 2007741 06 CH_2(0,77,41)
05 H3pers) 90 CH_3(1,67,75)
04
04 CH_4(0,318,75) CH_4(0,31875)
4(0318, 03
03 \__
—CF 507274 02 ——CH_5(0,72,74)
02
01 ——CH6(0,17842) 01 ——CH_6(0,178,42)
0
— = CH_7(0,85,105
0 . - CK_7 (0,85,105) Q@ P & & 5@ " o & ) _7(0,85,105)
Ny &
%‘9\\ \\’&(\ \\'& «Qv x\’e)‘\ «@\ \«'@\\ v'@\ \«'& \\'@\\ «"q‘ 5 «”& 5 S N ¢ F oo
N O N
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02 ——CH_6(0,178,42)
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Figure 3-26: Relay Control - hourly, daily, and weekly variability of the coverage hole repetitiveness
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Figure 3-27: Relay control - relay placement workflow

An initial evaluation of the computation time and the associated energy consumption of the Coverage Hole
Detection process has been done. As described in 3.4.1.1, the clustering process based on DBSCAN is
repeated N times every day, each time with the measurements collected in each period of duration 1. In the
considered scenario that consists of 3 gNBs and setting N=14 and t=1hour (see Table 3-3), the result of the
Coverage Hole Detection process of the collected measurements during one day can be obtained in
approximately 150 seconds. This process has been run with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
processor. The average power consumption of this processor is around 25W, leading to an energy
consumption of 1.04Wh (3.74kJ) for each day. The energy consumption of the Coverage Hole Detection
process is highly dependent on the network size (e.g. the number of gNBs and the size geographical region
to be covered). Moreover, the required number of days D to be analysed in order to validate the identified
coverage holes has also a relevant impact in the energy consumption. It is worth mentioning that the
identified coverage holes may be valid for a limited period of time. For this reason, the periodicity in the
execution of the Coverage Hole Detection process in each gNB is relevant to guarantee a precise coverage
hole characterization but it is also important to assess the algorithm energy consumption. BeGREEN D4.3
will deal with these aspects and their impact in terms of energy consumption.

3.4.2Fixed relay placement

This process aims to identify the geographical locations to deploy fixed relays with the objective of improving
the performance at the identified coverage holes. It is activated by the RFM rApp in the Non-RT RIC when
the placement of a new fixed relay is required in the coverage region of a specific gNB. As shown in Figure
3-27 the Relay Placement (RP) process is executed at the Al Engine. It collects information about the coverage
hole characterization available in the coverage hole database in the Al Engine. This information is used as
input for the relay placement algorithm executed in step 4 (see Figure 3-27). This relay placement process is
described in section 3.4.2.1. In case a new fixed relay needs to be deployed, its geographical location and
configuration parameters is determined. This information is included in the relay database (see step 5).
Finally, the result of the relay placement process is notified to the relay control (steps 6-7) that informs the
network operator about the necessity of deploying a new fixed relay.

3.4.2.1 Fixed relay placement algorithm

The fixed relay placement process is executed according to the pseudo-code presented in Algorithm 3-2,
which is responsible for deciding the geographical coordinates to deploy the new fixed relay. This is done on
the basis of the validated coverage holes characterised in the coverage hole database. For each coverage
hole, the search space of possible geographical locations where the fixed relay can be placed is initially
defined. The proposed methodology considers a square region of side x meters around the centre of the
coverage hole (line 4 of Algorithm 3-2). Note that the value of x must be higher than the coverage hole
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diameter. Note also that the fixed relay must be deployed outside the region of the coverage hole to
guarantee good propagation conditions between the fixed relay and its associated gNB. This square region
is tessellated in pixels of 1x1meter. For each pixel of this region, the path loss of the signal coming from the
different gNBs is determined. Then, the pixel with the highest RSRP from the signals coming from the
different gNBs is considered as the best position for placing the fixed relay. This process is repeated for all
validated CHs. The output of this process is the geographical locations for each of the new fixed relays to be
deployed. Once the fixed relays are deployed, this information is updated in the relay database.

Algorithm 3-2: Relay Control - Relay Positioning
Collect list of validated CHs

For each validated Coverage Hole in the list

Set the search area of possible locations where the relay can be placed

Compute path loss in each 1x1m pixel inside the area defined in step (3)

Obtain the coordinates of the pixel with highest RSRP from the signals coming from the different gNBs
End for

Gather optimal coordinates for each relay in an output file.

N o A WN R

3.4.2.2 Initial evaluation

The considered fixed relay placement methodology has been initially executed to determine the best
location of a new fixed relay to provide coverage to Coverage Hole CH_2, identified in section 3.4.1.2, which
is the validated coverage hole with the highest repetitiveness (see Table 3-4). The relay placement
methodology considers all the potential geographical locations inside the building where the coverage hole
CH_2 was detected. After running the relay placement methodology, the best geographical location to place
the relay R1 is represented in orange colour in Figure 3-28.

To evaluate the network performance improvement and the potential benefits in terms of energy
consumption reduction with the placement of this fixed relay, an exhaustive search of different values of
transmitted power of the different BSs has been done. For the different combinations of transmitted power
values, an estimation of the coverage hole area has been done by determining the number of pixels of 1x1m
in which the RSRP is below a threshold Thgsze=-90dBm. On the other hand, the overall total power
consumption has been estimated as:

Figure 3-28: Relay control - best geographical location to place the fixed relay R1 (in orange) to address coverage
hole CH_2
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Nps
Ptot=P0,r+aR'PT,R+2P0_b+ab'PT,b
b=1

where Py, represents the relay power consumption at zero RF output power associated to circuits, signal
processing, etc., and ar corresponds to the linear dependency between the total relay power consumption
and the radiated power Prg. Similarly, the terms Py, ap and Prp are the corresponding power model
parameters for the b-th BS. In the considered scenario, the number of BSs is Ngs=3. The considered simulation
parameters are the ones that were presented in Table 3-3. Additionally, Table 3-5 presents the considered
parameters of the deployed relay and the parameters of the power consumption model.

Table 3-5: Relay Control - Model Parameters

Parameter Value ‘
BS transmitted power range [35-50] dBm

Fixed Relay transmitted power 10 dBm

Relay antenna gain 3dB

Relay bandwidth 20 MHz

Relay propagation model InH - 3GPP TR 38901

Power consumption parameters [48] Po,=6.8W, ag=4, Por,=130W, aps=4.7

Table 3-6 presents a comparison in terms of power consumption and the area of the coverage hole for the
different configurations of BS and relay transmitted power. The first solution in Table 3-6 represents the
benchmark configuration with an initial value of transmitted power of 35dBm at each gNB. In this case, a
relatively large coverage hole is observed as it was shown in Figure 3-25. A possible solution to address this
coverage hole is to increase the transmitted power of one of these gNBs. As shown in Table 3-6, increasing
the transmitted power of one of the gNBs to 49dBm leads to a power consumption P:,:=793W, i.e. an increase
in 82% in the total power consumption with respect to the benchmark configuration (where all three BS
transmitted with 35dBm). Even in these cases, the coverage hole is not completely solved, as shown in Table
3-6. In order to address the coverage hole, an exhaustive search of the transmitted power of the Ngs=3 gNBs
has been done with the aim of minimising the total power consumption Pi.

Table 3-6: Relay Control - Comparison of Different Combinations of Transmit Power at the BS and Relay
Pri(dBm)  P;,(dBm) ‘ Pr3(dBm)  Prgr(dBm) Pior(W) Coverage Hole Area (m?)

B
encht:nark 35 35 35 - 434.58 224
solution
49 35 35 - 793.04 24
Sub-optimal 35 49 35 - 793.04 7
solutions 35 35 49 -- 793.04 11
B luti
t‘ast solution 38 38 48 _ 745.86 0
without relay
Soluti ith
olution wi 35 35 35 10 441.42 0
arelay

* 035:4. 7, PO,b:130VV, CIR:4, and PO,r:6.8W

The optimum solution found without deploying a relay is shown in Table 3-6 but it requires a total power
consumption of 745.86W that corresponds to an increase of 71% with respect to the benchmark
configuration. However, the deployment of the relay at the identified location (see Figure 3-28) with a
transmitted power of Pr,=10dBm, addresses the problems at the coverage hole with a total power
consumption Pi:=441.42W (see Table 3-6). This corresponds to a reduction in 40.8% of the total power
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consumption with respect to the best solution found without relay. This reduction has a high dependence of
the considered parameters in the energy consumption model. To illustrate this, Table 3-7 presents the power
consumption reduction that can be obtained by deploying this fixed relay with respect to best solution
without relays for different combinations of the terms Pq,, ag, Po» and ass [48][49]. As shown in Table 3-7,
this power consumption reduction ranges between 37% and 71%.

Table 3-7: Relay Control - Power Saving by Deploying Relay for Combinations of the Energy Parameters
28.4 28.4 4.7 4.7 2.8 2.8 2.57 2.57

Parameters for the BS and relay PO,b 156.38 156.38 130 130 84 84 12.85 12.85
energy consumption model 20.4 4 20.4 4 20.4 4 20.4 4

13.91 6.8 13.91 6.8 13.91 6.8 13.91 6.8
Power savings by deploying the relay [EWAWAS 71.5% | 39.8% | 40.8% | 36.9% | 38.5% | 66.9% | 70.1%

As shown in Table 3-6, it is worth noting that the deployment of the fixed relay leads to a slight increase
(around 1.5%) in the power consumption with respect to the benchmark solution. However, the deployment
of the fixed relay may be useful to reduce the gNBs transmitted power (and consequently the total power
consumption) and guarantee the coverage requirements in the whole cell. As a future line of work, an
extension of these initial results will be done in BeGREEN D4.3, taking into account all the validated coverage
holes identified in the scenario. Then, an assessment of the gNBs transmitted power reduction that can be
obtained with the deployment of fixed relays (and the corresponding total power consumption reduction)
will be evaluated guaranteeing, at the same time, the overall coverage requirements in the scenario.

3.4.3 Candidate RUE identification.

As shown in section 3.4.2, coverage holes may be addressed by deploying fixed relays at specific geographical
locations. However, it may lead to an increase in CAPEX and an increase in the total power consumption.
Fixed relays consume certain amount of power Py, even when no user is connected. In order to address these
drawbacks, this section explores the possibility of taking advantage of UE relaying capabilities. According to
this, some specific UEs can become RUE and act as a relay between the gNBs and neighbour UEs that may
be located at the coverage holes. This approach requires the identification of UEs with some specific
characteristics that make them good candidates to become RUEs. In general, static UEs with good
propagation conditions with the BSs that remain active for long periods of time may be good candidates to
become RUEs.

Human mobility has usually a strong regularity and predictability since it is usually driven by daily/weekly
schedules. With the development of recent technologies for the collection of historical user location and
other context information, and the capacity of processing this information by means of Al/ML algorithms, an
accurate characterization of future UE locations and UE mobility can be obtained. These technologies can be
useful for the identification of periodicity/seasonality in the regions visited by the UEs during the day/s.
Identifying metrics related to UE presence in different geographical regions, regularity of this presence,
session duration statistics in each region, etc., is essential for the adequate identification of candidate RUEs.

Figure 3-29 illustrates the workflow of the candidate RUE identification process. The main objective of this
process is to identify UEs with some specific characteristics that may indicate that they can be good candidate
UEs to become RUEs and act as a relay to serve neighbour users located in a coverage hole. This process is
activated by the RFM rApp in the Non-RT RIC after the identification of coverage holes in specific gNBs. The
candidate RUE identification process is run in the Al Engine. This process collects the characterization of the
coverage holes from the coverage hole database and the available measurements of the historical sessions
of UEs in this gNB available in the measurements datalake (see steps 3-4). This information is processed in
order to identify good candidate UEs to serve as RUE. The details of this process is explained in section 3.4.3.1.
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Figure 3-29: Relay Control - candidate RUE identification process

The list and characterization of the candidate UEs to become RUEs for each identified coverage hole is send
to the relay database in the Al Engine. Then, the end of the process is notified to the RFM rApp in the Non-
RT RIC (see step 8).

3.4.3.1 Candidate RUE identification algorithm

The candidate RUE identification process described in step 5 in Figure 3-29 is presented in Algorithm 3-3.
First, the information of the identified coverage holes is extracted from the coverage hole database. For each
coverage hole, the proposed algorithm determines the list of UEs that have been located in a square region
of side x centred at the coverage hole centroid, where x is a distance in meters, during at least one time
period of T seconds in the available dataset. Note that the value of x must be higher than the coverage hole
diameter and the candidate RUEs may be located outside the coverage hole region to guarantee good
coverage for them. For this purpose, information about the sessions carried out by the different users at this
geographical square region is collected from the measurements datalake. In particular, the time when each
session is established and released is collected for each UE. According to the obtained information of these
UEs, the proposed algorithm builds a matrix R that represents the presence of each UE in the specific
geographical square region in each m-th time period of duration T for each d-th day (with m=1,...,M and
d=1,..,D). This analysis is done in a UE-by-UE basis. Each element of the matrix R, rmq=1 if the UE was
connected at the m-th time period of the d-th day, and rn, +=0 otherwise.

Algorithm 3-3: Relay Control - Candidate RUE Identification
1 Get the list of validated Coverage Holes

2 For each validated Coverage Hole
Determine a square region with side x centered at the coverage hole center.

Determine the list of UEs that have been located inside the region defined in step (3)
during at least one time period of duration T.

For each UE in the list of UEs
Build matrix R

Determine presence, average RSRP and session duration, daily and weekly regularity.
End
Select candidate RUEs
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Do
=

9

End

This R matrix is processed for each UE to determine the following statistics:

Presence (%): Percentage of time periods with duration T in which a specific UE is present in the
specified square area. A UE with a high presence is a good candidate to become a RUE.
l&):l 2%:1 "m,d

M-D
Presence (%) w.r.t. the time periods when the coverage hole is detected: Percentage of time periods
with duration T in which a specific UE is present in the specified area with respect to the number of

Presence(%) =

time periods where the coverage hole is detected. The presence of the coverage hole in the different
time periods is obtained from the matrix P available in the coverage hole database (see section
3.4.1.1). This term is quite relevant because it indicates the availability of the corresponding UE to
become a RUE in the time periods in which the coverage hole is detected.

Average RSRP reported by the UE when it is in the specific region. A UE with favourable propagation
conditions with respect to its serving gNB is a good candidate to become RUE.

Average session duration: It is calculated as the time the UE is active in this specific area divided by
the number of sessions established by the user in this area. A UE with a high average session duration
is a better candidate to become a RUE.

Daily regularity (d;): This index measures the regularity of the presence of a UE in the specific area
for the different time periods of the day. In order to determine this index, the R matrix is used. For
the sake of clarity, this process is represented in Algorithm 3-4. For a given m-th time period of the
day (with m=1,...,M), the percentage of time in which the UE is present at each specific m-th time
period is determined for all the weekdays (i.e. from Monday to Friday) of the dataset. Then, the
number of time periods of the day in which this percentage is higher than a specific threshold
(Nperiods_above tn) is divided by the total number of periods of the day M (see step 4 in Algorithm 3-4).
A UE with a high daily regularity means that it is located in the same geographical area at the same
periods of the day in the different days, exhibiting a high regularity for the different weekdays. Users
with a high daily regularity may be good candidates to become a RUE.

Algorithm 3-4: Relay Control - Calculation of the Daily Regularity
1 D’ is the number of weekdays (from Monday to Friday) in the dataset.

2 For each m=1 with m<M

D1
3 it Za=ndt s

4 Nperiodsiaboveith=Nperiodsiaboveith"‘l

5 di=N periodsiaboveith/M

Weekly reqularity: This index measures the regularity of the presence of a UE in the specific area for
the different time periods of the week. In order to determine this index, the week is divided in N=M-D
number of time periods, each one with duration T. For a given n-th time period of the week (with
n=1,..,N), the percentage of times in which the UE is present for all the weeks of the dataset is
calculated. Then, the number of time periods of the week in which this percentage is higher than a
specific threshold is determined and divided by the total number of periods in the week. A UE with
a high weekly regularity indicates that it is located in the same geographical area at the same time
periods of the week for the different weeks, exhibiting a high regularity for the different weeks.
These users may be good candidates to become a RUE.

After analysing these metrics for all the UEs in the list, a ranking of the most adequate UEs that may become
RUE is obtained. This process is repeated for all detected CHs. The output of this process is a list and
characterization of candidate RUEs for each coverage hole. This information is updated in the relay database.

[SNS-JU-101097083] 79



/28
O
D4.2 — Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and Al/ML Algorithms BEGREEN

3.4.3.2 |Initial evaluation

The candidate RUE identification process has been run for all the coverage holes identified in section 3.4.1.2.
For each coverage hole, the considered methodology searches for candidate RUEs located in the same
building and floor where the coverage hole was identified. Table 3-8 presents the best candidate RUEs
identified in each of the coverage holes.

Table 3-8: Relay Control - Best Candidate RUEs Identified in Each Coverage Hole
Candidate

RUE  presence () ol uration ()
Identifier
CH_1 UE_943 58.28 0.75 0.10 11.9
(1,60,43) UE_456 53 0.64 0.47 10.6
CH_2 UE_765 100 1 1 14
(0,81,41) UE_474 44.5 0.49 0.26 6.18
CH_3 UE_992 77.30 0.56 0.59 5.38
(1,69,76) UE_093 63.1 0.69 0.56 4.04
CH_4 UE_184 39.7 0.53 0.04 1.56
(0,318,75) UE_382 30.68 0.47 0 1.46
CH_ 5 UE_920 100 1 1 14
(0,74,74) UE_429 60.0 0.83 1 8.4
CH_6 UE_544 56.9 0.23 0 1.71
(0,178,42) UE_992 44.2 0 0 2.5
CH_7 UE_302 26.4 0.65 0 1.66
(0,85,105) UE_032 25.2 0.57 0 1.15

In coverage hole CH_1, user UE_943 can be a RUE during almost 60% of the time when the coverage hole is
detected. As shown, this user has a relatively high weekly regularity and a long average session duration.
However, it should be necessary to check that there is any other UEs that can serve as RUE in the rest of the
time in which this coverage hole is detected. In case that no such UEs are found, the deployment of a fixed
relay may be necessary. In turn, in coverage hole CH_2, user UE_765 is available to serve as RUE in the time
periods when the coverage hole is present. In this case, it may not be necessary to deploy a fixed relay for
addressing coverage hole CH_2. Finally, there are other coverage holes, such as CH_7, in which the best-
found candidate RUE would only be available to serve UEs in the coverage hole during a 25% of the time
when the coverage hole is detected. In this case, many different UEs would be needed to serve as RUE
alternatively in order to cover the 100% of the time. In these cases, the deployment of a fixed relay may be
a better solution.

An initial evaluation of the computation time and the associated energy consumption of the Candidate RUE
Identification process has been done. The result of this process for the collected measurements during one
day can be obtained in approximately 6 seconds in the considered scenario with 7 coverage holes in the
University Campus region covered by 3 gNBs. The process has been run with an Intel(R) Xeon(R) Gold 5218R
CPU @ 2.10GHz processor. The average power consumption of this processor is around 25W, leading to an
energy consumption of 0.04Wh (144J) for each day. This corresponds to a very low energy consumption.

3.4.4Relay activation/deactivation process

The proposed methodology aims to smartly activate the relays to improve the performance of UEs located
in coverage holes and deactivate the relays when they are not necessary in order to reduce energy
consumption. For this purpose, this methodology makes use of recent collected measurements and status
of the different relays (available in the relay database). This information and an activation/deactivation
trained model is used to take adequate decisions of relay activation/deactivation. Two kinds of relays are
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considered: i) fixed relays deployed in the network and ii) RUEs, (i.e. UEs with relaying capabilities).

The relay database must contain updated information of all the fixed relays and candidate RUEs connected
to each BS. On the one hand, concerning fixed relays, this database contains information about the relay
geographical location, the relay status (i.e. whether the relay is active/inactive) and an availability probability.
On the other hand, for the particular case of RUEs, similar parameters are considered:

e RUE location: when a UE establishes a connection with a gNB, it is necessary to check whether this
UE has relaying capabilities and consent and whether it belongs to the list of candidate RUEs for this
gNB. Additionally, it is necessary to check that the UE has good propagation conditions with the
serving gNB. In this case, the RUE location is collected and updated in the relay database. It is worth
noting that, although RUEs are usually static/semi-static UEs, their location may change.

e RUE status: It indicates whether the relaying functionality is active/inactive.

e RUE availability probability: The spectral efficiency in the link BS-RUE is measured, and in case that
this value is higher than certain threshold, then, the RUE is considered to be available. Other metrics
such as battery level, etc. may also be checked to determine the RUE availability probability.

For all the relays connected to each gNB, the relay activation/deactivation process is run continuously, and
the relay status is updated with a certain periodicity Treiay status update- The relay activation/deactivation
decisions are done based on a trained DQN that combines RL with DNNs. As explained in BeGREEN D4.1 [1],
with a periodicity Treiay status_update, aN agent takes the decision of activation/deactivation of a relay (i.e. action)
to be applied for the next time period. This action is based on the state observed in the previous time period
and a policy it that has been learnt in the DQN training process. The state observed in the previous time
period is based according to the following information:

e The current status of the relay (i.e. whether each relay was active or not in the previous time period).

e The average number of UEs that have been served by the relay, in case that the relay was active in
the previous time period.

e An estimation of the number of potential users that would have been served by the relay, in case
the relay was inactive in the previous time period. For the case of fixed relays, this estimation can be
done by observing the number of users that have been served in previous periods of time in which
the relay was active (e.g. at the same period of the day in previous days). In turn, this kind of
estimation may not be valid for the case of RUEs since they may change its geographical location as
a function of time. However, the estimation of potential users that would have been served by the
RUE in the previous time period can be obtained by means of proximity analytics information
collected by means of the NWDAF.

The procedure for obtaining NWDAF proximity analytics can be done as described in the following [50]:

1. A request is sent to the NWDAF for analytics related to relative proximity from a specific RUE (i.e.
statistics of number of UEs that satisfy a proximity criterion with respect to the RUE in the previous
time period with duration Treiay status update)-

2. The NWDAF may follow the UE Input Data Collection Procedure via the Data Collection Application
Function (DCAF). The DCAF may collect proximity related input data directly from the UE Application,
for NWDAF to determine a list of UEs fulfilling certain proximity criterion [51].

3. The NWDAF derives requested analytics.

[SNS-JU-101097083] 81



[

- . . . 8
D4.2 — Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and Al/ML Algorithms BEGREEN
Al Engine Non-RT RIC
Relay ON/OFF
| ML developer ‘ ‘M()del catalog‘ | Datalake‘ model training ‘ RAD Assist rApp ‘ | Data collection rApp ‘ ‘ Datalake ‘ ‘ NWDAF ‘ | gNB ‘ ‘ Relay‘ ‘DCAF ‘

Relay
Activation H H il
Deactivation | | Opt A: Use of an external dataset for training. ‘

mEe! i 1la.Store dataset.
training : :

Opt B: Generate dataset with new measurements ‘ . .
o 1b. Activate data collection

1b. Activate data collection.

1b. Activate proximitylinformation(opt).

1b. Activate proximity information: (opt)

loop 2b. Send measurements

2b. Send measurements.

2b. Proximity information (opt).

2b. Proximity information (opt)

3b. Get measurements.

4b. Send measurements

5b. Store dataset.

6. Trigger model training.
7.Get dataset.

8.Train model

9; Store activation/deactivation model

Figure 3-30: Relay Control - workflow of the relay activation/deactivation training process.

Itis possible to set a continuous reporting of relative proximity information with a periodicity Treiy status update-
By combining the status of the relay and the previously mentioned metrics, the proposed methodology
makes use of a policy based on a trained DQN model, see BeGREEN D4.1 [1], to take adequate relay
activation/deactivation decisions. Section 3.4.4.1 presents the process and workflow for the model relay
activation/deactivation model training while section 3.4.4.2 focus on the process of inference to take the
relay on/off decisions.

3.4.4.1 Relay activation/deactivation model training

Figure 3-30 illustrates the process of training of the relay activation/deactivation model. The training process
can be triggered manually by the ML developer. Alternatively, under certain specific conditions, or with a
given periodicity, a retraining process may be triggered by the Relay Activation/Deactivation (RAD) assist
rApp that continuously monitors the performance of the ML model. In case that an available dataset is used
for training, then, this dataset is directly stored in the datalake of the Al Engine (see step 1a in Figure 3-30).
In turn, in case that it is necessary to generate a new dataset for training the model (option b in Figure 3-30),
then, the Data collection rApp in the Non-RT RIC triggers the collection of new measurements. During a
specific training period, collected measurements (such as the status of the relay, the number of users served
by the relay or the number of potential users) are collected and stored in the Non-RT RIC datalake (see step
2).

For the case of RUEs, the number of potential users that would have been served if the relay was active in
the previous time period is obtained by means of proximity analytics information by means of the NWDAF.
Then, the number of UEs fulfilling a specific proximity condition to the RUE is requested to the NWDAF (via
DCAF) and sent to the datalake in the Non-RT RIC (see step 2b). Once the process of generation of the dataset
is finished, the dataset is stored in the datalake of the Al Engine (step 3-5). Then, the training process may
be triggered manually by the ML developer or by the RAD Assist rApp. Training data stored in the datalake is
collected and the model training process is run in the Al Engine. Finally, the trained Al/ML relay
activation/deactivation model is stored in the Al/ML model catalogue in the Al Engine. The details of the
training process were described in BeGREEN D4.1 [1], and are briefly explained as follows.

The state s(t) is represented as a vector associated with a particular BS b, and it has different components
listed in the following:

o Cp(t)={api(t), apa(t),...,anr(t)} denotes the configuration (ON/OFF) of all relays in the previous time
period t.
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®  Np(t)={Np,1(t), Np2(t),..., Npr(t)} corresponds to the average number of UEs that have been served by
each relay in the previous time period t.

o N’u(t)={N’p1(t), N'v2(t),..., N'br(t)} is the average number of UEs that would have been served by the
r-th relay in the previous time period if the relay had been active. The total number of components
in the state is 3-R where R is the number of considered relays.

A given action a(t) can be seen as a vector Cp(t)={as(t)} that contains the relay activation configuration
applied every time window accounting for all the considered relays. The so-called action space contains all
relay activation configurations. Since a relay has only 2 possible modes (activated and deactivated), the total
number of possible actions in the action space is 2°.

In order to learn the policy that leads to the best action given a specific state, a reward function is used in
the training process. As described in D4.1, the reward function r(t+1) that assesses the action a(t) that is

selected in a specific state s(t) can be expressed as:
R

1
r(t+1)=1 — E Ch,r ®)
r=1

with

a if ap,(t)=1and Ny, (t) < Thyynm
cor(®) =318 if ap (t) =0and Ny, (t) = Thpym

0 otherwise
Where N,,(t) is the average number of UEs served by the r-th relay in period (t, t+Treiay status update) While N’ (t)
is the average number of potential UEs that would have been served by the r-th relay in period (t,
t+Trelay status_update) if the relay had been active. According to the previous equation, c,,(t)=a if the r-th relay
was active in the previous time period (i.e. a,(t)=1) and the number of served users was below a threshold
(i.e. Nor(t)<Thpum). In turn, cy(t)=B if the r-th relay was deactivated (i.e. as(t)=0) but the number of users
that would have been by this relay in the previous time period was higher than a threshold (i.e. N’y /(t)2Thpum).
Initially, =1 and B=1 can be considered but also other possible values may be studied.

The training process described in step 8 in Figure 3-30 is detailed in Algorithm 3-5. At each training step, the
agent observes the state and chooses an action a(t) following an e-greedy policy that selects the action based
on the current policy with probability 1-€ and a random action with probability €. This random action
selection is needed in the training process for incorporating the capability to explore new actions that are
different from the ones that the current policy would select. After applying the selected action, the obtained
reward is measured and saved in an experience tuple dataset. Every time that the experience dataset reaches
its storage capacity, older experiences are removed and substituted by recent ones.

Algorithm 3-5: Relay Control - DQN Training
Initialise DNN counter p=0

For t=0 with t<Num_train_steps
Collect state s(t)
Generate random number €’ between 0 and 1
If t<InitialCollectSteps
Select a random action a(t)
else If €'<e¢

Select a random action a(t)

O©W 0 N o Uuu & W N R

Else

=
o

Select an action a(t) based on policy t

11 End if
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12 Compute r(t+1) and s(t+1) according to a(t)
13 If Dis full
14 Delete the oldest experience
15 Store experience <s(t), a(t), r(t+1), s(t+1)>in D
16 Sample randomly a minibatch of experiences U(D)
17 Compute loss function L(8)
18 Compute the mini-batch gradient descent VL(6)
19 Update weights 8 of evaluation DNN
20 If p<P
21 Update the weights of target DNN 6™ = 6 and set p=0
22 Else
23 p=p+1
24 End if
25 End for

Moreover, at the beginning of the training, the agent selects actions randomly (i.e., € is set to 1) to gather a
wide variety of experiences. This is maintained during a number of InitialCollectSteps training steps. The
update of the weights of the evaluation DNN is done at every training step by considering the experiences
accumulated in the experience dataset. An updating process consists of making a random selection of a mini-
batch U(D) of past experiences J belonging to the dataset. Then, the update is performed by means of a mini-
batch gradient descent procedure. To this end, the average Mean Squared Error (MSE) for all the experiences
in U(D) is computed. Then, the mini-batch gradient descent is computed by the derivative of L(8) with respect
to 6. The final step consists of updating the weights of the evaluation DNN. Following each update of 6, the
obtained Q(s,a,0) will be used to select new actions. In relation to the weights 8- of the target DNN, they are
updated as 8™ =0 after every P update of the evaluation DNN. More details of this process were presented in
BeGREEN D4.1 [1].

3.4.4.2 Relay activation/deactivation model inference

Figure 3-31 illustrates the process of relay activation/deactivation inference based on the trained model. As
shown in Figure 3-31, the process is repeated iteratively with a periodicity Tupdate refay status. The first step
consists on the collection of measurements related to the number of users served by each relay Np,(t),
number of potential users N’ (t) and the status of the relay (i.e. whether the relay was active/inactive in the
previous time period). For the case of RUEs, the number of potential users served by a RUE is obtained from
the NWDAF via DCAF. Collected measurements are sent to the Al Engine via the RAD assist rApp (see step 2
in Figure 3-31). The status of the relay that is stored in the Relay database is also used by the Al/ML model
inference (step 3). Then, the trained model is collected from the Al/ML model catalogue. The collected
information and the trained model are used to generate a relay activation/deactivation recommendation for
the next period Typdate reiay status (S€€ Step 5). This recommendation is sent to the relay control at the SMO that
sends a command to the nodes with the activation/deactivation action of the relay (steps 6-7). Finally, the
relay status is updated in the relay database (Step 8). The RAD assist rApp continuously evaluates the
performance of the used activation/deactivation model to determine the necessity of model retraining.

3.4.4.3 Initial evaluation

The proposed relay activation/deactivation methodology has been initially evaluated for taking adequate
decisions of the activation/deactivation of a fixed relay deployed to address the coverage hole CH_2 (see
Figure 3-25). The DQN model has been trained using measurements collected during 6 days. The step
duration is 30 seconds. The DQN configuration parameters are summarised in Table 3-9.
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Figure 3-31: Relay Control - workflow of the relay activation/deactivation inference

Table 3-9: Relay Control - DQN Algorithm Configuration Parameters

Parameter Value

InitialCollectSteps 500 steps
Num_train_steps 17280 steps
Experience replay buffer length 100-103
Mini-batch size (J) 64
Trelay_status_update 30s
DNN updating period (P) 500 steps
Discount factor (y) 0.9
Learning rate (o) 0.001
€ value (e-greedy) 0.1
Thhum 0.5
Input layer: 3 nodes
T P Two Hidden layers: 100 and 50 nodes
Output layers: 2 nodes

In the training process, the obtained policy is evaluated every 12 hours. The evaluation of each policy is
executed with a simulation of the system during 2 hours. Then, the average reward obtained by this policy
is computed. Figure 3-32 shows the evolution of the average reward of the obtained policies. As shown, the
average reward increases as a function of the training time. Note that after 36 hours of measurements used
for training, the average reward is around 0.95 (i.e. very close to the maximum reward of 1) and the learning
process has converged since the average reward remains almost constant for the rest of the training time.

Figure 3-33 presents an example of the time evolution of the relay activation/deactivation decision according
to the policy learnt in the training process. This example illustrates the number of served users/potential
users in the period between 8h and 12h of a specific day. As shown, in the time periods when there are no
users to be served by the relay, the policy decides to switch off the relay (Relay status=0 in Figure 3-33) with
the objective of reducing energy consumption. In turn, in time periods when there are users to be served by
the relay, the relay is switched on (Relay status=1).
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Figure 3-33: Relay Control - Evolution of the activation/deactivation actions with the obtained policy

After the analysis of the relay activation/deactivation decisions during the day in which the proposed
methodology was tested, it was observed that the relay was active in 946 periods of 30 seconds (i.e.
t_active=7.88 hours) and the relay was deactivated in 1934 periods of 30 seconds (t_innactive=16.12 hours).
Then, the energy saved during a specific day, by turning off the relay in periods when there are no users to
be served can be calculated as:

Energy_saving=t_innactive-(Po,Psieep)

According to [48], the power consumption when the relay is active at zero RF output power is Po,=6.8 W.
Concerning the term Pgeep, the Advanced Sleep Modes defined in [52]consider the case of the sleep mode
SM4 that turns off most of the components of the relay when it is deactivated. Then, the value of Pgeep is
determined as 10% of the value of the term Po,. According to previous equation, the energy that can be
saved during this specific day by deactivating the relay is around 98.6 Wh (354.9 kJ). It is worth noting that
the relay can be set to sleep mode SM4 since the relay activation time is quite fast (i.e. in the order of
hundreds of milliseconds [52]) with respect to the considered period of activation/deactivation decisions of
30 seconds. The energy savings that can be obtained may differ depending on the presence of users near the
relay location and also on the considered day. As an example, in a geographical region without users to be
served by a specific fixed relay (e.g. in a weekend day), the relay can be deactivated during the whole day
leading to a maximum energy saving equal to 147 Wh (529.2 kJ). In BeGREEN D4.3 a more detailed evaluation
of the total energy savings that can be obtained considering all the relays/RUEs deployed in the scenario.

Concerning the computation time and the associated energy consumption of the Relay
Activation/Deactivation process, an initial evaluation has been done for the training of a single relay. As
shown in Figure 3-32, the training process provides a good relay activation/deactivation policy after analysing
36 hours of measurements. In the considered scenario, this is obtained by executing the training process in
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approximately 40 minutes with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz processor. The average
power consumption of this training processor is around 25 W, leading to an energy consumption of 16.6 Wh
(59.76 k).

Concerning the computation time for the model inference to take relay activation/deactivation decisions,
the execution time of this process is approximately 0.44 ms. Considering that the model inference is executed
with a periodicity of 30 seconds and that the power consumption of the processor is 25 W, the energy
consumption is around 0.0088 Wh (i.e. 31.68 J) for each day and relay.

3.5 Trafficcaware compute resource management to enhance UPF energy
efficiency

This section presents strategies to manage the compute resources of the edge servers hosting UPF instances
of the 5G according to the traffic demand and aiming at reducing the energy consumption. In BeGREEN D4.1
[1] we introduced the main concepts and strategies to be considered when addressing this problematic:
dynamic scaling the CPU frequency through the CPU P-states [53] and the number of threads. However,
during the experimental characterization using the UPF implementation of the Open5Gs®3 open source 5GC,
we found some limitations regarding its packet processing capabilities, i.e., single-threaded operation and
low performance due to kernel-based packet processing [54]. Therefore, we decided to switch to an
alternative open-source UPF implementation from OpenAirinterface (OAl)!*, which is based in VPP and
DPDK 6, These fast packet processing technologies foster the increase of throughput, making them more
suitable for real operational scenarios. However, they intensively utilize compute resources, what may lead
to higher energy consumption [55] and open the door to energy efficiency-focused strategies.

In the following subsections we will detail the UPF implementation, the studied strategies and the initial
evaluation based on an experimental characterization. Note that, as was introduced in D4.1 [1], the final
objective is to enable proactive resource allocation based on traffic forecasting. To this end, we will use the
real data from the Packet Data Network Gateway (P-GW) of Spanish MNO, as was presented in Section 3.3.
We have started evaluating some ML models based on Facebook’s Prophet'’, and the results will be reported
in BeGREEN D4.3.

3.5.1Solution design and use case

The OAI UPF-VPP is an open-source implementation of the 5GC UPF (Release 15 & 16) based on VPP and
DPDK technologies. The main components of its implementation are i) the UPF-VPP application logic, (ii) the
DPDK framework management for the NICs, and iii) the multi-thread management policy. Figure 3-34
illustrates the main architecture of UPF-VPP and how these components are involved during packet
processing flow. The UPF-VPP runs on top of kernel bypass technologies, described as low-level building
blocks (i.e. netmap, DPDK, or Open Data Plane). In the case of DPDK, once the packet batches arrive in the
user space, VPP processes them in form of vectors (depicted as (2) and (6) in Figure 3-34). Then, the vector
processing nodes perform packet management functions like memory management or buffering. For
instance, in the case of the UPF, the vector processing nodes will perform the N3/N6 GTP
decapsulation/encapsulation and the forwarding to the N6/N3 interfaces (noted as (3) and (7)}). The output
node will finally forward packets to the required Network Interface Card (NIC) interface (steps (4) and (8)).

DPDK uses a Poll Mode Driver (PMD) that employs busy-polling to access NIC descriptors without

13 https://open5gs.org/

14 https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp
15 https://fd.io/technology/

16 https://www.dpdk.org/

17 https://facebook.github.io/prophet/
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interruptions. This method eases and expedites network packet management, i.e., the retrieval, processing,
and delivery of packets to user space applications. Also, the DPDK interface driver and abstraction modules
are used to manage the interface on user space. Therefore, other kernel network drivers are no longer
needed (e.g., iptables or route tables). VPP, when bypassing kernel with DPDK libraries, handles packets in
batch, allowing packet processing acceleration. However, VPP also inherits the intensive CPU usage of PMD,
nearly leading to full utilization. In the case of the UPF-VPP, the NIC descriptors (1) and (5) in Figure 3-34 are
constantly being pulled by DPDK to process the incoming GTP packets in the N3 or N6 interfaces. This leads
to full CPU usage, irrespective of the network load conditions, thus obtaining high energy consumption and
low energy efficiency in low loaded scenarios.

In terms of performance, the UPF-VPP implementation leveraging DPDK outperforms the results of other
open-source solutions, such as Open5Gs [56]. In preliminary results using the experimental setup described
in Section 3.5.28, we obtained around 35 Gbps of TCP throughput with a single-threaded UPF-VPP instance,
compared to a maximum of 1 Gbps using Open5Gs [1]. However, this high performance comes at the cost of
high energy consumption. Figure 3-35 depicts the performance of default governors in terms of energy
consumption and achieved throughput. The performance governor, which selects always the maximum
available frequency (2.7 GHz in this case), was able to reach 35 Gbps. However, evenin idle mode, i.e. without
processing GTP traffic, the energy consumption was high due to poll modem driver intensively using the CPU.
On the other hand, the powersave mode always selected the minimum available frequency (1 GHz in this
case), saving significant energy (~30%) in idle mode but reaching a maximum throughput of 22.6 Gbps. This
highlights the need of a traffic-aware strategy to dynamically manage CPU frequency and optimise the
energy efficiency of the UPF.
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Figure 3-34: UPF resource allocation - UPF-VPP architecture and processing flow
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The evaluated UPF-VPP implementation supports single and multi-threading working modes. In single-thread
mode, one main thread handles packet processing and other management functions. In the case of a multi-
threading setup, the CPU cores made available during the initial configuration are managed by the VPP
application in the user space and assigned to worker threads. These worker threads manage the NIC cards
to perform end-to-end packet processing. For instance, in the case illustrated in Figure 3-34, two
independent worker threads are separately managing the end-to-end packet processing of MO and MT
packets. Since the workload in each thread can be managed by specific CPU cores, it enables the application
of independent trafficcaware CPU policies such as frequency scaling. If more CPU cores than NICs are
included in the initial configuration setup, more threads will be created, and each CPU core will be bound to
a new worker thread.

Once the worker capacity, which is measured as “average vectors per node”, goes close to the maximum
capacity (i.e., 256 according to [57]), the RX queue of the worker starts dropping packets. Using more threads
provides scaling capability for high-performance packet processing on the UPF-VPP, but at the same time,
increases CPU power consumption.

Figure 3-36 depicts how the energy scales with the number of threads in idle mode for minimum and
maximum CPU frequencies. According to these results, we can anticipate scenarios where using more
threads at lower frequencies will offer better energy efficiency than using fewer threads at higher
frequencies. Note that hyperthreading is not considered since VPP and DPDK can lead to performance
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degradation when using several logical cores due to sharing resources of the physical core like the L1 and L2
caches [58].

According to the components and features presented in the previous section, we can conclude that the
default UPF-VPP DPDK configuration and operation presents the following challenges to provide high
performance plus energy-efficiency:

e Duetotheintensive CPU usage required by the PMD, the energy consumption of each worker thread
is very high, even when not handling any packets or any RX queue,. Besides, the workers are unable
to dynamically control the PMD mechanism.

e The pool of available resources is set up only in the initial configuration (i.e., fixed number of workers
and associated cores), and it does not apply or allow any dynamic resource reallocation according to
the measured or expected traffic load.

e After initialization, the defined workers are associated with the available RX queues of the NICs and
no built-in method is available to offload the packets being processed to a different core and
releasing the one assigned by default.

To address these challenges, Figure 3-37 schematically depicts the resource allocation model that is being
considered, where according to the number of NICs and their incoming load of the NICs, we can determine
the following energy-efficient strategies:

e CPU frequency scaling: In the initial setup, a reception (RX) queue on a NIC is associated with a
worker thread, which is then managed with a CPU. While it is not possible to modify PMD behaviour,
which requires CPU resources in an exhaustive way, CPU p-states policies may be applied to adapt
the frequency of the core to the incoming load in the NICs. Matching core frequency with actual
packet processing requirements, will optimise energy-efficiency.

e Worker/Thread reallocation: Fixed allocations of threads can lead to inefficiencies. Processing
capacity per NIC is increased by assigning more RX queues and workers to a NIC, what also allows to
assign additional core resources. This enables strategies such as assigning to a NIC several cores at
low frequency instead of a single core at high frequency, which may provide additional energy
savings. On the hand, under low traffic demands, decreasing the number of threads by allocating
several NICs to a common worker may also enhance energy efficiency.

Note that the combination of these two strategies will be highly relevant in real deployments, where uplink
and downlink traffic demand is usually unbalanced. Therefore, proper thread allocation and CPU frequency
scaling, tailored the predicted traffic demand for each NIC, will significantly enhance the overall energy
efficiency of the system.
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Figure 3-37: UPF resource allocation — Allocation model
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In addition to these resource allocation strategies, in case one worker or core is not needed during a specific
interval of time, two main approaches may be applied according to the use case. On the one hand,
thread/CPU idle mechanisms, such as the enhanced C-states C0.1 and C0.2 available in recent Intel CPU
generations [59], may be used to hibernate both core and worker functions such as the PMD. On the other
hand, released cores may be reallocated to other services present in the same server, for instance Al/ML
workloads.

In the next section, we will present an experimental characterization of these energy-efficiency strategies,
with focus on the trade-off between performance and energy consumption. We will also validate the
feasibility of dynamic approaches according to the current implementation of the DPDK-based UPF-VPP and
the available tools in Linux kernels.

3.5.2Initial evaluation

This section presents the experimental characterization performed to study the relationship between UPF
performance, CPU resource allocation techniques and energy consumption. First, we describe the testbed
and the software tools being used. Then, we discuss the obtained results.

3.5.2.1 Experimental testbed
The architecture of the experimental testbed is depicted in Figure 3-38 and described as follows:

e VPP-DPDK UPF server: The VPP-DPDK implementation of OAl’s UPF'° is deployed as baremetal in a
server. The CPU of the server is an Intel Xeon processor D-2123IT with 4 physical CPUs (base
frequency 2.2 GHz, max turbo frequency 3 GHz) and a maximum power consumption of 60 Watts.
The server has four 10 Gbps interfaces, what allows us to reach throughputs of around 20 Gbps in
uplink and 20 Gbps in downlink. Hyperthreading was enabled in the BIOS though not used by the
UPF implementation as recommended in [58]. Turbo frequencies were also available.

e gNB & UE servers: These servers host the PacketRusher tool?, which emulates the 5G gNB and the
UE. Compared to other open-source emulation tools, PacketRusher is specially indicated for high
performance scenarios, being able to reach 5 GB/s per UE. It requires an N2 connection to the 5GC
Control Plane and a N3 connection to the UPF. We used Iperf32!in TCP mode to generate the traffic
to and from the Application servers.

e Open5GS Control Plane server: Open-source solution which Implements the 5GC Control Plane?2. It
allows to connect network functions from different vendors or open-source implementations
through standard interfaces, as is the case of the VPP-DPDK UPF via N4.

e Application servers: Host the Iperf3 servers and are connected to the UPF via the N6 interface.

The throughput experiments were conducted using Iperf3 TCP sessions in dual-mode, i.e. generating the
same amount of traffic in both the uplink and downlink directions.

For the sake of comparison, all four interfaces were used during the tests, distributing the traffic equally
among them. The reported results are based on the average of 3 to 5 experiments, though confidence
intervals are not provided due to their negligible values. We used the tool powerstat > to obtain the
consumption of the UPF server, which uses Intel’s Running Average Power Limit (RAPL) interface.

19 https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp
20 https://github.com/HewlettPackard/PacketRusher
21 https://iperf.fr/

22 https://open5gs.org/

2 https://github.com/ColinlanKing/powerstat
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Figure 3-38: UPF resource allocation - experimental testbed

The option to obtain separated core and uncore power consumption was not available in our Operating
System (OS). Thus, it is reported the total power consumption of the processor package of the server.

3.5.2.2 Experimental results

The performed experiments aimed at characterising the influence of two factors on the maximum achievable
throughput and on the consumed energy of the VPP-DPDK UPF: (i) CPU frequency and (ii) the number of
assigned threads. Note that in the first case, we only assigned a CPU to the UPF, while the others were unused
and configured at minimum frequency.

CPU frequency scaling:

As was mentioned in Section 3.5.1, the PMD being used by DPDK in order to poll NICs requires a high
utilisation of the CPU (around 100%). This increases the energy consumption even in the cases with no traffic
when the UPF is idle. Figure 3-39 depicts the measured consumption in idle status for different CPU
frequencies. Note that the measured power consumption of the server before starting the UPF was 16W, i.e.
just initiating it increased significantly the energy consumption, ranging between 60% and 120% depending
on the CPU frequency.

Additionally, the results highlight the impact of the turbo frequencies (i.e., frequencies higher than 2.1 GHz),
which introduced a noticeable knee point between low and high CPU frequencies and significantly increased
the energy consumption trend. As depicted in Figure 3-40, this causes that, with low traffic demands, low
CPU frequencies can process incoming packets requiring of less power than higher frequencies. For instance,
until it saturates at approximately 20 Gbps, working at 1 GHz significantly decreases the energy consumption
compared to higher frequencies. Note that 2.7 GHz is equivalent to the performance governor.

Results in Figure 3-40 also show that the increase of energy consumption with the throughput is steeper at
lower CPU frequencies compared to higher frequencies, where the increase is more gradual and smoother.
This limits the benefits of using low CPU frequencies under high throughputs. This could be caused by uncore
power consumption, for instance due to an increase of the utilisation and misses at the L3 cache due to the
high throughout and low CPU frequency. Cache misses force DPDK to access slower DRAM memory more
often, which is more power-hungry. Future work will include characterizing this possible problematic.

Figure 3-41 compares the power consumption of the Performance governor (i.e., at 2.7 GHz) with an
adaptive strategy which selects the minimum CPU frequency able to serve the incoming traffic (from 1 GHz
up to 1.7 GHz as show in the graphic). As previously mentioned, the Energy Savings (left y-axis) are substantial
under low load conditions, exceeding 25%, but they gradually decrease as traffic increases. However, even
in this case, improvements in energy savings ranging from 15% to 5% can still be achieved. Additionally, in
real scenarios, to allow reaching higher throughputs during peak hours, the baseline UPF configuration will
include several cores operating in performance mode. This scenario will be analysed in the next section.
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Figure 3-39: UPF resource allocation - Power consumption in idle status (no traffic)

39

E——g

37

33

31
29

27

Power Consumption (W)

25

Idle 5 10 15 20 25 30 35
Throughput (Gbps)
=#=1 Ghz =%=1.4GHz =%=1.9GHz =23 GHz =%=2.7GHz

Figure 3-40: UPF resource allocation - Power consumption and achieved throughput according to CPU frequency

Workers/Threads scaling:

We next evaluated the performance of the VPP-DPDK UPF when increasing the number of workers and
threads, i.e., when increasing the number of CPUs dedicated to the UPF. Particularly, we considered a
scenario with 2 physical CPUs, i.e., one dedicated to N3 NICs and the other one to N6 NICs, and another one
with 4 physical CPUs, each one dedicated to an individual NIC. We also varied the CPU frequencies, using the
same one in all the CPUs being used.

Figure 3-42 depicts the results of 1, 2 and 4 CPUs, combined with CPU frequencies of 1, 1.9, 2.3 and 2.7 GHz
(X-Y in the legend stands for X CPUs at Y frequency). As was expected according to the measurements based
on idle status presented in Figure 3-36, the impact on energy consumption of increasing the number of CPUs
is more noticeable at higher CPU frequencies.
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Figure 3-41: UPF resource allocation - Energy Consumption of the optimal vs performance CPU allocation
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Figure 3-43: UPF resource allocation — Energy Saving benefits according to proposed strategies

Therefore, results at 1 GHz offer the best trade-off between performance and energy consumption, being
able to provide the maximum throughput by using 2 CPUs.

As previously mentioned, in real deployments that do not apply energy efficiency optimizations, the default
resource allocation for the UPF typically involves activating all CPU cores and setting them to the maximum
frequency (i.e., performance mode). This approach ensures the system can handle peak throughputs without
the need for restarting the system but will lead to a very high energy consumption. On the other hand, by
applying a dynamic setting of CPU frequency and of CPU-worker assignment, we could allocate the required
resources in each period according to the incoming traffic demand. Figure 3-43 illustrates the achievable
energy savings in our setup when considering the performance (i.e., 4-2.7 in Figure 3-36) and the optimal
(i.e., a combination of 1-1 and 2-1 in Figure 3-36) modes. As in previous cases, the energy saving benefits are
more relevant at lower loads, but even under high traffic demands savings can still reach approximately 30%.

Future work will include the evaluation of these strategies according to real traffic dynamics in uplink and
downlink directions by using the P-GW dataset from an MNO. Additionally, we will also integrate and
evaluate traffic forecasting to enable proactive decision-making.
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3.6 Joint orchestration of vRANs and Edge Al services

In this section we address the problem of the joint orchestration of virtualized RANs and edge Al services.
This problem is already introduced the previous BeGREEN D4.1 [1] and it is crucial for the development of
energy efficient services at the edge of the network.

In the following, we first extend the experimental characterization of the system introduced in BeGREEN
D4.1, and then we detail the design of a Bayesian online learning algorithm to tackle the problem. In
BeGREEN D4.3, we plan to evaluate the proposed algorithm experimentally. Specifically, we will conduct an
analysis of convergence under stationary and dynamic network conditions, an empirical study of optimality
and a comparison with state-of-the-art ML approaches in terms of data efficiency and adaptability to changes
in the requirements of the system.

3.6.1Use case

The performance indicators and policies were already introduced in BeGREEN D4.1 [1]. We provide a
summary as follows:

e Performance indicators:

o Service delay: End-to-end delay that includes the image pre-processing at the user side, its
transmission, the processing at the server (GPU delay), and the return of the bounding boxes
and labels.

o Mean Average Precision (mAP): It is used to quantify the service accuracy [60].

o Server power consumption: Power cost associated with the computational load of the service's
requests, which is dominated by the GPU power consumption.

o Base Station power consumption: Power consumption associated with processing the baseband
unit in a virtualized RAN environment.

e Policies:

o Image resolution: This policy sets the average encoding of every image (number of pixels) which
the service can enforce.

o Radio Airtime: This radio policy imposes a constraint on the radio resources (duty cycle) the vBS
allocates to the service traffic.

o GPU speed: The server’s policy is a GPU power limit that adapts the processing speed of a GPU
(or a pool of GPUs) in a slice to meet the adopted power constraint.

o Radio MCS: This policy imposes a constraint on the maximum MCS eligible by the vBS to
transport the service’s data over the air.

In BeGREEN D4.1, we characterized the relationship between the service delay and the server power
consumption through the image resolution and the airtime. Moreover, we also analysed the impact of the
MCS policy, airtime and image resolution on the power consumption of the BS. Now, we extend the
characterization to analyse the behaviour of the system as a function of other policies.

Figure 3-44 shows the trade-off between delay and mAP for the COCO dataset images encoded with different
resolutions. The remaining configuration policies are fixed. The findings reveal interesting and quantifiable
trade-offs: (i) Higher-resolution images carry more pixels encoded in a larger amount of data; thus, they incur
a higher delay due to longer transmission time over the radio interface. (ii) Lower-resolution images cause
the service to provide lower mAP performance because they carry less information for the object detection
engine. Specifically, we measured a 72% improvement in delay at the expense of precision reduction ranging
between 10% to 50%.
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Figure 3-44: vRAN and Edge - Mean average precision (mAP) vs. service delay for images with different resolutions.

Figure 3-45 (top) depicts the service delay and the server's power consumption for several image resolution
configurations. We now fix the airtime to 100% and vary the policy allocating computing resources. A higher
amount of computing resources increases the server's power consumption, as we are relaxing the power
limit imposed to the GPU. We observe that low-res images contribute to increasing the server's power
consumption as the rate of requests also grows. However, it is interesting to note that higher-res images
ease the work on the GPU, as evidenced by Figure 3-45 (bottom), which shows the delay associated with the
GPU tasks only. All in all, despite this improvement in the GPU delay, the corresponding increase in
transmission delay when using higher-res images dominates. It is important to observe that, while this is true
in our experimental testbed, it may well be different for diverse deployments (e.g., a more energy-efficient
GPU, or a higher-bandwidth RAN). This motivates the need for learning algorithms that adapt to the different
deployments.

The trade-off presented before between service delay and the server power consumption, certainly appears
for other performance metrics, such as the mAP. To assess this, Figure 3-46 shows the mAP achieved by the
service as a function of the server's power consumption for various image resolutions. The findings confirm
the service cost depends on the mAP.
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Figure 3-45: vRAN and Edge - Delay vs. server's power consumption for images with different resolutions and GPU
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Figure 3-46: vRAN and Edge - Mean average precision vs. server's power consumption for images with different
resolutions. The radio and computing resources are allocated to minimize the delay.

Importantly, however, the relationship with mAP is substantially different from that with the service delay.
In this case, higher mAP performance actually requires less server power consumption. The reason lies in the
fact that higher-res images (which render higher mAP) facilitate object detection and hence require less
computation, see Figure 3-46 (bottom).

As a conclusion of our experimental characterization, we would like to highlight that our system consists of
a large number of intertwined parameters with non-trivial effects on the performance and energy
consumption. As a consequence, we resort to model-free machine learning approaches to design a controller
that adapts autonomously to context changes and the vBS and server hosting platforms. We provide a
summary of the experimental findings from this section in Table 3-10.

Table 3-10: vRAN and Edge - Summary of the Experimental Findings

Control Policy ‘ Impact on the Performance Indicator ‘

Image Resolution | Higher image resolution implies higher delay, better mAP, and lower GPU delay.

Airtime Higher airtime implies lower delay, and higher server and BS consumed power.

GPU Speed Higher GPU speed implies higher server consumed power and lower delay.

MCS Higher MCS reduces the consumed power at the vBS with low traffic or the opposite
with high traffic.

3.6.2Solution design

In this section, we design an online learning algorithm that solves the problem defined in D4.1, which is
formulated as a contextual bandit. Most of the existing contextual bandit algorithms assume a linear
relationship between the contexts-control space and the associated reward [61]; or assume a certain
structure in the reward function [62]. However, as our experimental characterization reveal, our
performance metrics have a non-linear and unknown curvature, but we do observe a high correlation with
the control policies. That is, a small change in one of the policies (e.g., image resolution) will produce a small
change in delay and power. This allows us to get information about unobserved context-control points via
nearby points, hence reducing the exploration time.

Based on the above points, we propose a Bayesian online learning method that models the cost and
constraint functions as samples of Gaussian Processes (GPs) over the joint context-control space. This non-
parametric estimator deals with the aforementioned non-linearities and correlations, and quantifies the
function estimation uncertainty, addressing effectively the exploration vs. exploitation trade-off.

Function approximator:

In order to estimate the cost and constraint functions we use GPs, which consist of a collection of random
variables that follow joint Gaussian distributions [63]. Let z € Z = Q0 X X denote a context-control pair. We
model each of the unknown functions as a sample from GP(u(z), k(z, z’)), where pu(z) is its mean function
and k(z, z") denotes its kernel or covariance function. Without loss of generality, we assume u = 0 and
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k(z, z) < 1, which we refer to as the prior distribution, not conditioned on data. Given the prior distribution
and a set of observations, the posterior distribution can be computed using closed-form formulas.

The sets of observations of the cost and constraint functions at points Z; = [z, ..., zy] up to time period T
are denoted by yTEO) = [uqg, oo, ur], y}l) = [d4, ..., d7], yﬁz) = [py, ..., pr], respectively, assuming i.i.d.
Gaussian noise, ~ N(O, Zé))). The posterior distribution of these functions follows a GP distribution with

mean and covariance:

. . . -1 .
W@ = kP @7 (KD +By1r)  yy (1)
. ) ) i -1 .
kP(z,2) = kO (z2,2) - kP @7 (K + )17) kP (@) )

where k;i)(z) = [k(i)(zl,z), ...,k(i)(zT,z)]T, KT("L.) (z) is a kernel matrix defined as[k(i) (Z,Z')]ZZ,EZ ,ris
» T
the T-dimension identity matrix, and (fi) the variance of noise in observations. Index i denotes the objective

function, with i = 0 for the cost function, i = 1 for the delay, and i = 2 for the mAP. The distribution of
unobserved values of z € Z for function i is computed from the prior distribution, vector Z; and the

observed values yp using the equations above.

Kernel selection:

The kernel shapes the GP's prior and posterior distributions, and thus encodes the correlation of the function
values for every pair of context-control points. In other words, the kernel characterizes the smoothness of
the functions [64]. The properties of the kernel should be thoroughly selected for each specific application
and the functions to be learned.

We observe in our experimental characterization that the performance indicator functions exhibit different
smoothness for each dimension (control policy). In order to approximate these functions accurately, we
select our kernel function satisfying two properties: stationarity and anisotropicity.

This means that k(z, z') is invariant to translations in Z but not invariant to rotations in Z. The kernel
smoothness for each dimension of function i is encoded in the length-scale vector LO = [lil), . ll(vl)], where

N is the number of dimensions of Z. The distance between two points based on the length-scale vector is:

d(i)(z,z’) — \/(Z _ ZI)T(L(i))—Z(Z —2z"),

where L&) = diag(L(i)) is a diagonal matrix of the length-scale vector. In order to satisfy the properties
stated above, we select the Matérn kernel on its anisotropic version [63]. Moreover, following standard
practice, we particularize it with parameter v = ; (details in [63]), indicating that the function is at least once

differentiable. Thus, the expression of the kernel can be particularized as follows:
kO (z,z") = (1 +/3dO(z, Z’)) exp (—\/§d(i)(z,z’))

Note that although we are using the same kernel for all cost and constraint functions, their hyperparameters
differ and depend on each function's shape. In fact, £L® and noise variance (é) should be optimized for each
function i before running the algorithm, by maximizing the likelihood estimation over prior data. During
execution, the hyperparameters remain constant, since otherwise (optimized with newly acquired data) it is
not guaranteed the GPs' confidence interval will cover the actual function within, causing the optimization
to fall into poor local optima [65].

Safe set:

It is crucial to identify first which controls satisfy the constraints, which, however, depends also on the
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context. For instance, when the user's channel quality decreases (the context changes), the user uses a lower
MCS, which increases the transmission time hence increasing the service delay. Therefore, the controls that
are suitable for high channel quality may not meet the delay constraint with low channel quality. We define
the safe set as the set of policies that satisfy all the constraints for a given context c:

S(c) = {x € X|d(c,x) <d™* A p(c,x) =p™"}.

Nevertheless, the computation of the safe set is challenging. Firstly, the observations of the performance
metrics are noisy due to the stochastic nature of the system (e.g., noise in the measurements, random
variations in the performance), as we observed in the experimental characterization. And secondly, the
number of controls | X| is very large in practice, making it unattainable to explore all possible configurations,
for all possible contexts. For these reasons, we use GPs to compute an estimation of the safe set:

St = So Ulx € X|uZy(cox) + Bo (e, x) <d™* A w2 (cox) = o2y (cpx) = p™n ).

, 2 .
where (051)(2)) = k®(z,2) and B is a weight parameter. Note that the safe set changes over time for

two reasons. First, it is a function of the context and, therefore, when the context changes, the set of control
policies meeting the constraints varies. Second, as we get more observations of the constraint functions their
estimated values and uncertainties also change, allowing us to compute the safe set more precisely. In other
words, at each period t, point z; is observed and vectors Z; and y;i) Vi are updated. Due to their correlation,
the posterior distribution of points near z; will be updated, hence affecting which controls will be included

in the safe set.

Acquisition function:

It indicates, at each time period t, which control x; shall be used in the system given context c;. This task is
crucial for the convergence of the algorithm and needs to interleave an exploration process in order to
expand the safe set while seeking a safe control with high performance. Many previous works have proposed
acquisition functions for constrained Bayesian optimization [66] [67] [68], but they do not consider contexts.
To the best of our knowledge, SafeOpt [67] is the only work using contexts. However, while SafeOpt provides
theoretical performance guarantees, we found in our experiments that its acquisition function has overly
slow convergence; an issue that has been reported in other works as well, e.g., [69]. Therefore, we expand
this approach by using the contextual Lower Confidence Bound (LCB) proposed in [70] as an acquisition
function, but constrained to safe set, i.e.:

0 0
Xt = argmaxyes, #5_)1 (ce, %) + Btat(—)1 (¢, %)
Algorithm 3-6 summarizes the whole workflow our solution. At the beginning of the time period t, the

context c; is observed (line 4). Based on the observed context ¢; and the vectors Z;_; and yt(i)l V i from the
previous time period, the posterior distribution of all the functions is computed using eq. (1)-(2) (line 5). Note

that when we do not have observations (i.e., Z, and yél) are empty sets, V i) the posterior distribution is

equal to the prior distribution. Using the expectation and uncertainty of the constraint functions and the
equation to estimate the safeset, the safe set S; is built (line 6).

Algorithm 3-6: vRAN and Edge — Solution Workflow
1 Inputs: Control space X, kernel k, 3, 83, &5, pmi", qamax

2 |Initialize yo(i) Vi Z, as empty sets.
3 Fort = 1,2,...do

4 Observe context ¢,

5 Compute ,ugi_)l, Jt(i)l Vi, based on Eq. (1) and (2)
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6 Estimate the safe set of actions S; = Sy, U{x € X | ,uﬁ)l(ct,x) + ﬁat(f)l(ct,x) < dmx A #(2) (cp,x) —

t-1
Bo 2 (cex) = p™iny

7 Select the control policy x; = argmax,es, ug(l)l (w¢,x) + \/Eat(f)l (¢, x)

8  Observe d,(c, x;), pe(ce, xp), pi(ce, x,), and p? (cq, x,) at the end of decision period ¢

9 Compute the cost u,(c;, x.) = 8;pg (¢, x) + 8,pP (c, x)

10 UpdateZ; « Z,_4 Uz, = [c, x¢]

11 Update yt(o) — Yeo1 Uug(wg, xp)

12  Update yt(l) < Y4 Udi(wg, xt)

13 Update yt(z) < Ye-1 U pr(wg, x0)

14 End for

The control x; is selected from the safe set S; based on the posterior distribution of the cost function and
the acquisition function (line 7). At the end of the time period t, all the performance indicators are observed.
Then, the cost function is computed. Finally, the new context-control pair z;, the value of the cost function
us(ct, x¢) and the value of the constraint functions (d;(c;, x;) and ps(c;, x;)) are added to their respective

vectors to generate Z; and yt(i) Vi (lines 10-13).

Note that our solution does not expand explicitly the safe set like in other works such as [67] [66]. These
works propose an explicit expansion of the safe set by intentionally exploring controls in the boundary. The
objective is to converge to the true safe set and therefore to reach the optimal safe control. However, we
found that our acquisition function can both minimize the cost function and expand the safe set.

The reason is that control policies with lower values of power consumption are usually in the boundary of
the constraint (e.g., they are associated with higher service delay). Hence, when the acquisition function
explores lower power controls it is indirectly exploring the boundaries of the constraint, reducing its
uncertainty and thus expanding the safe set. In other words, the acquisition function exploits the problem
structure to efficiently expand the safe set.

Practical Issues:

It is interesting to note that, if the performance bounds (constraints) are very tight and the problem is
infeasible, the safe set will converge to the initial safe set, that is, L]im St = Sy (since Sy is always included in
—00

S¢, Algorithm 3-6, line 5). This might happen only for certain contexts, e.g., for very low channel quality. In
any case, our solution will select control policies from the initial safe set S, which are intentionally selected
to be the ones with the lowest delay, the highest mAP and, therefore, the highest consumed power. On top
of that, the proposed algorithm is robust to changes in the constraint settings, and hence can adapt if, for
example, the operator decides to relax them during the system runtime in order to avoid such infeasibilities.
We demonstrate this in the next section. Finally, it is worth mentioning that the computation of the posterior
distribution in eq. (1)-(2) is O(N?). However, we found in our experiments that this does not introduce any
delay since we have a wide enough time window to update the control policy, according to O-RAN
specifications.

3.7 Intelligence Plane validation

In this section, we report the initial validation of the Intelligence Plane, which is based on the demonstration
performed at the 2024 EuUCNC & 6G Summit (EUCNC’24). The main objective of this validation was to assess
the baseline architecture and operations of the Intelligence Plane, focusing on two key components: the Al
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Engine and the Non-RT RIC. In particular, we considered the energy-efficient 5G carrier on/off switching use
case presented in Section 3.3, developing and integrating the required ML models and AIA rApps.

3.7.1Solution design and use case

Asintroduced in Section 2, the Al Engine, which leverages MLOps framework, hosts the BeGREEN ML models,
whose outputs are exposed to control rApps through the AIA rApps. In this initial validation, we considered
the exposure of two ML models, 5G sector energy and load predictor introduced in Section 3.3.2, and the
Energy Score function presented in Section. Each of the models/functions were served through specific real-
time pipelines of MLRun using the Nuclio serverless frameworks. At the Non-RT RIC domain, the specific AIA
rApps were deployed and registered as data producers using the OSC’s ICS component, which implements
the R1 interface. Finally, the control rApp subscribed to the outputs of these functions and used them to
drive the decisions of the on/off switching control loop. In the demonstration performed at the EUCNC’24,
we exposed the outputs from the functions hosted in MLRun through a Prometheus exporter embedded in
the control rApp, visualizing it in a Grafana dashboard. Future work is to generate the Al Energy Saving (ES)
policy, according to the definition presented in 2.1.2, and send it to the Near-RT RIC and the associated
Energy Saving xApp. In addition, we will also incorporate RAN telemetry producer rApps processing and
exposing online data obtained from the RAN; in this demo, this data was obtained from the offline dataset
presented in section 3.3.1.

Figure 3-47 illustrates the components and interfaces involved in this validation.

3.7.2Initial evaluation

This subsection presents the initial validation of the Intelligence Plane according to the abovementioned use
case. The validation is mainly reported in the form of screenshots. Interested readers can also refer to the
published video showcasing the demonstration?®.

The Non-RT RIC was implemented as a Kubernetes cluster in an Intel NUC9i7QNX with the following specs:
i7-9750H CPU, 64 GB RAM, and 1 TB SSD. The Al Engine was deployed in an Intel NUC10i7FNH with the
following specs: i7-10710U CPU, 64 GB RAM, and 1 TB SSD.

BeGREEN Intelligence Plane

f BeGREEN Al Engine \ - SMo
H Cell Load ’ ‘é’
i Predictor <
(inference pipeline)
— :
e ) i . non-RT RIC
Cell Energy : '
Predictor < i t
(inference pipeling) : H
| .
: CLP Al Engine '
) Assist rApp ' osc
Energy Score : S ! IcS
function H —_—
N CEP Al Engine [< ™
: Assist rA| :
Serverless ML i (DSSETReR Cell Control
runtime 5 : rApp
clic & ES Al Engine [< - -
Assist rApp
R1

Figure 3-47: Intelligence Plane - EUCNC'24 demo and initial validation

24 https://youtu.be/ NOJYOSepgc?si=5cdNPETnWigZtvHK
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BeGREEN SMO + non-RT RIC

APl of the BeGREEM SMO + non-RT RIC

Contact Miguel Catalan
rApps ICS/R1-Producers ICS/R1-Consumers
GET /pods List Pods GET /info-type GetProducerinfo Type GET /info_type GetConsumer info Types
POST /pods Deploy Rapp POST /info-type PostProducer Info Type GET /jobs GetJobs
‘E fpods/{pod_name} Delete Pod |E /info-type Delete Producer Info Type |m /jobs Delste Job
ICS/R1 Sl /producers GetFroducers FZB /iobs-status Get jobs Siatus

GET fstatus Status ‘ E fproducers Delete Producer

GET fproducer-status Get Producer Status

GET fproducer-jobs GetProducer Jobs

Figure 3-48: Intelligence Plane - BeGREEN SMO and Non-RT RIC REST API - initial validation

name”: “ics

"name”: “pro

name”: “e S ssist-rapp”,
"pod_ip":

or-assist-rapp”,

“name”: "
"pod_ip":

“name" :

Figure 3-49: Intelligence Plane - Pods active in the Non-RT RIC k8s cluster during validation

3.7.2.1 Non-RT RIC functions

Non-RT RIC components, such as the ICS and the Apps, are deployed as pods and services in a Kubernetes
cluster. In this validation, the focus was on the management through the SMO/Non-RT RIC REST API and the
ICS component of the data types and the associated producer and consumer rApps. Figure 3-48 shows the
main endpoints of the Non-RT RIC API, while the ICS API definition can be found in the OCS online
documentation®. As future work, we plan to integrate and validate the management of A1 policies and the
communication through A1 with the Near-RT RIC interface.

First, the REST APl of the SMO allows to manage the lifecycle of the rApps, through POST (deploy) and DELETE
(undeploy) methods. During deployment, the docker images of the rApps are retrieved from a registry and
instantiated as pods according to the specified environment variables.

25 https://docs.o-ran-sc.org/projects/o-ran-sc-nonrtric-plt-informationcoordinatorservice/en/latest/ics-api.html
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Code Details
200

Response body

"status": "hunky dory”,
"no_of_producers™:

"no_of " 3,

I

Figure 3-50: Intelligence Plane - ICS/R1 status during validation

In addition, an associated Kubernetes service is created to facilitate communication between producers,
consumers, and the ICS. Figure 3-49 illustrates the active pods during the validation of the use case.

As detailed in Section 2.1.2, OSC’s ICS works as in implementation of the DME functions of the R1 interface.
Through its API, it can be obtained the number of active producers, information or data types, and jobs or
subscriptions, as illustrated in Figure 3-50.

Information types are used to identify the data that is generated by the producer rApps and consumed by
the consumer rApps. The Non-RT RIC APl implements POST, GET, and DELETE methods to manage them. The
POST method allows to define the required information to generate the data (“job_definition”) and the
output that will be generated (“job_data”), following the model that was illustrated in 2.1. Note that once
one or more producers are associated with a specific information type, this type cannot be deleted before
the producers get undeployed. As an example, Figure 3-51 depicts the created information types defining
the cell load predictor (top) and the energy score (bottom). As an example, Figure 3-51 depicts the created
information types defining the cell load predictor (top) and the energy score (bottom).

Figure 3-52 depicts the workflow followed for the registration of the required information types for the ML
models and the energy score.

"info_job_data_schema™: {
"job_definition™: {
1 ist of cells ids (list of str)",
"frequency of the predictions in seconds (int)}”

"cell_id™: "cell id (str)",
"prediction”™: "prediction value (float)”,
"accuracy”: "prediction value if available (float)”

1
g

FE]
"info_type_information™: {
"description™: "Prediction of the load consumed by a cell according to different KPIsS"
1
g

¥

"info_job_data schema™: {
"job_definition™: {
"cell ids™: "list of cells ids (list of str)",
"period™: "fregquency of the predictions in seconds (int)}”
A

FE
"Jjob_data": {
"cell_id™: "cell id (str)",
"score”: "score value (float)™
}
1
PE]
"info_type information®™: {
"description™: "Energy score of a cell according to its load and consumed energy”
].

}

Figure 3-51: Intelligence Plane - Example of information type definition
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Non-RT RIC / SMO

Developer/pperator SMO‘ API ICS/R1‘ DME

| New Info type: "cell energy predictor”,
| (job definition, job data)

Y

New Info type: "cell energy predictor”,
(job definition, job data)

\4

I
I
I
:
: New Info type: "cell load predictor”,
! (job definition, job data)
I
I
I
I
I
I

Y Ny

New Info type: "cell load predictor”,
(job definition, job data)

y ¥y ¥y

 New Info type: "cell energy score",
I (job definition, job data)

>
>

| |

! I New Info type: "cell energy score",
1 | (job definition, job data)
I |

>
>

|
Developer/Operator SMO API ICS/R1 DME

Figure 3-52: Intelligence Plane- Workflow for definition of information types for ML models

3.7.2.2 AlArApps

AIA rApps mainly act as data producers, exposing the real-time pipelines of MLRun to the control rApps. In
the case of ML models, MLRun also allows the creation of training and monitoring pipelines or the analysis
of feature importance; the incorporation of these operations will be explored in BeGREEN D4.3. Nevertheless,
pre-trained models or other non-ML functions can be easily incorporated into the framework and served
through Nuclio. Figure 3-53 shows the ML functions view of MLRun which lists some of the models and
functions being validated.

The command column shows the IP and port where the real-time function will be exposed and that will be
triggered by the AIA rApp to get its outputs. Figure 3-54 shows how these functions are listed in the Nuclio
framework.

The Open Source MLOps
Orchestration Framework

Projects > david-jovyan > ML functions

Name: Show untagged

Name Kind Hash Updated Command Image

» Energy-score & 229ef66 May 23, 03:32:17 PM hitp://192.168.40.51:30604 index.docker.io/
> Z‘_{;S;"“““)“d ctor Serving .7652bf6 May 23, 12:49:05 PM http://192.168.40.51:32680 index.docker.io/
> e:'c”t’ pRypedicicy Serving ..55bb6b5 May 14,10:18:32 AM http://192.168.40.51:30851 index.docker.io/
> pRervp edictor-3500 Serving 25affae May 13, 11:37:00 AM http://192.168.40.51:30044 index.dockerio/

nelog-reg-classifier Serving 3af9907 Apr 10, 01:34:54 PM http://192.168.40.51:31987 index.dacker.io/

atest

Figure 3-53: Intelligence Plane - MLRun: ML functions view
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Projects » david-jovyan » Functions

FUNCTIONS API GATEWAYS
O Name 1T Status Owner T Runtime 4
i david-jovyan-classifier o N/A Python 3.9
R david-jovyan-energy-score o N/A Python 3.9
B david-jovyan-eucnc-energy-pred... o N/A Python 3.9
i david-jovyan-eucnc-load-predict... o N/A Python 3.9
i david-jovyan-nc-log-reg-classifier o N/A Python 3.9

Figure 3-54: Intelligence Plane - Nuclio: Real-time functions view

Figure 3-55: Intelligence Plane - Energy Predictor AIA rApp deployment

2l Response body

I
l.
"supported_info_types™: [
“energy cell prediction”

1

"info_job_callback url”: “http://energy-predictor-assist-rapp-service:8092/jobs",
"info_producer_supervision_callback url™: "http://energy-predictor-assist-rapp-service:8892/supervision”

Figure 3-56: Intelligence Plane - Energy Predictor AIA rApp ICS registration

AIlA rApps are deployed using the POST method of the Non-RT RIC, as shown in Figure 3-55 for the case of
the Energy Predictor. Note that the serving endpoint of the ML model (or Nuclio function) is passed as an
environmental variable, allowing to reuse the AIA rApp in case a different serving endpoint is available (e.g.,
a new model offering better accuracy).

Once deployed, the AIA rApp interfaces the ICS to register itself as producer of the associated information
type, specifying the required endpoints for job creating and supervision as shown in Figure 3-56.

Then, the ICS/R1 will use the “info_job_callback_url” to register new jobs according to consumer subscription
demands (past or new requests).
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Load AIA rApp: Received job job="eucnc24-consumer-load_cell prediction® type='load_cell prediction’
data=JobData(cell ids=[ 'CATX8614P3"], period=5) target uri='http://eucnc24-consumer-service:8893/datadelivery’
owner="eucnc24-consumer' last_updated="2024-86-21T13:17:49.8371127°

Load AIA rApp - Sending job: {'producer_name': 'load-predictor-assist-rapp’, 'info_type': '"load_cell_prediction’,
'job_data’: {'result_list’: [{'cell_id’: 'CATX@614P3', ‘prediction’: 8.836968421936035, 'accuracy': ©.9235445553322382}
Load AIA rApp - Sending job: {'producer_name': 'load-predictor-assist-rapp’, 'info_type': '"load_cell_prediction’,
‘job_data': {'result_list’: [{'cell id': 'CATX@614P3', 'prediction’: 9.919861668766602, 'accuracy': @.9448294169383542}]}}

Figure 3-58: Intelligence Plane - Load Predictor AIA rApp — Data delivery

Non-RT RIC / SMO

Developer/Operator [SM?AP' ] [CEPAV‘“APP ] [CLPAL‘MAPP ] [CESAb‘ArApp ICS/R‘I‘ DME

| Deploy Cell Energy Predictor AIA rApp,
| (CEP info type, MLRun callback)

>

I I
I I
| |
I I
| New data producer, |
I I
I
I
I
I

(CEP info type, producer callbacks) o

Deploy Cell Load Predictor AlA rApp,
(CLP info type, MLRun callback)

> i

New data producer,
(CLP info type, producer callbacks)
T

Deploy Cell Energy Score AIA rApp,
(CES info type, MLRun callback)

New data producer,
(CES info type, producer callbacks)

| |
| |

1 1

| |

i | |
| | |
| | |
| | |
| |
| 1 1 1
| | | | |
i i i i i
L | | |
| | | | |
| | | | |
| | | | |
| 1 1 1 o
| | | i i
i | | | | |
| 1 1 1 1 1
| | | | | |
| | | |

i i i i i i
| | | | | |
| | | | | |
i | | | | i
| | | | I I

Developer/Operator [SMOAPI ] [CEPAIArApp ] [CLPAIArApp ] [CESAIArApp ICS/R1 DME

Figure 3-59: Intelligence Plane — Workflow for the deployment of AIA rApps

Figure 3-57 depicts an example of the automated job registration in the case of the Load Predictor AIA rApp,
obtaining the required parameters for the job creation as defined in the “job_definition” field of the
information type (see Figure 3-51) and endpoint of the consumer rApp for the data delivery.

According to this information, the AIA rApp starts delivering the data to the consumer as obtained from the
serving endpoint in the MLRun/Nuclio and the data delivery format specified in the “job_data” field of the
information type (see Figure 3-51). In the case of the initial validation scenario, the input data required by
the models (e.g., last load value of the cell or number of active UEs) was obtained from a datalake storing
the offline MNO dataset. Future work will include the online exposure of these KPIs through a RAN Telemetry
rApp. Figure 3-58 shows an example of data delivery in the case of the Load Predictor AIA rApp, which
includes the cell id, the predicted value, and the accuracy of the prediction or model.

Figure 3-59 depicts the workflow required to deploy the AIA rApps and register them as data producers
through the ICS/R1 interface.

3.7.2.3 Control rApp

The control rApps are also deployed through the POST method in the SMO. In the case of the rApp being
used for the initial validation of the Intelligence Plane, shown in Figure 3-60, we specified as environment
variables the information required by the different information types to define the job (i.e., cell id and period).

Once deployed, the Control rApp creates the different jobs through the ICS, which interfaces with the
required producers as introduced in Section 3.7.1. Note that in case a producer is not available when creating
the job, the ICS will store this request and create the subscription once available. Figure 3-61 depicts the
process of job generation done by the validated Control rApp, while Figure 3-62 illustrates the created job in
the case of the energy cell prediction information type.
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mwi/o-ran/rapps/eucnc2d_consumer_rapp:latest”,

"energy cell prediction”®,
job_result uri': "http://eucnc24d-consumer-service:8893/datadelivery’, 'job_owner': 'eucnc24-consumer’,
‘job_definition’: {'cell _ids’': ['CATX®614P3'], 'period’': 5},
status_notification uri': “http://eucnc24-consumer-service:8893/status’}
Creating job {'info_type_id"': '"load cell prediction’,
"job_result_uri’: "http://eucnc24-consumer-service:8093/datadelivery’, "job_owner’': 'eucnc24-consumer’,
job_definition': {'cell ids': ['CATX8614P3'], "period’': 5}
atus_notification_uri': “http://eucnc24d-consumer-servi 893 /status "}
reating job {'info_type id': "energy score’,
"job_result uri': "http://eucnc24-consumer-service:8893/datadelivery’, 'job_owner': 'eucnc24-consumer’,
*job_definition’: {'cell ids': [ CATX@614P3'], 'period’:

‘status_notification_uri': "http://eucnc24-consumer-servic

Figure 3-61: Intelligence Plane - Control rApp jobs generation

— Response body

“info_job_identity™: "eucnc24-consumer-energy cell prediction®,
“info_type_identity”: “energy_cell prediction®,
“info_job_data™: {
"cell _ids®: [
"CATX@614P3"

“target_uri®: “http:/feucnc24-consumer-service:8093/datadelivery™,
“owner™: "eucnc24-consumer”,
“last_updated™: “2024-06-01T08:37:43.6528927"

Figure 3-62: Intelligence Plane - Control rApp — job information

Finally, as was presented in Section 3.7.1 and illustrated in Figure 3-63, the AIA rApps start generating and
delivering the data according to the job definition and the job data format.

As abovementioned, in the case of this initial validation, the control rApp just exposed the predictions and
accuracy of the models, plus the energy score, through the Prometheus and Grafana frameworks, as shown
in Figure 3-64. The graphs show the evolution of the data and the predictors during a week, depicting every
5 seconds (i.e., job period) a value related to a real 15-minute measurement (i.e., dataset granularity).

Finally, Figure 3-65 depicts the workflow required to deploy the control rApp and register it as data consumer,
and the generated non-RT control-loop with the input data obtained from the ML models through the AIA
rApps.
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INFO: 10.42.0.239:51908 - "POST /datadelivery HTTP/1.1" 260 OK

{'producer_name': ‘energy-predictor-assist-rapp’, "info_type': 'energy cell prediction’,

'job_data’: {'result_list': [{'cell id': 'CATX@614P3', ‘prediction’: 16B8.22881862825522, ‘accuracy’': 1.8216324532080276}]}}
energy cell prediction prediction and accuracy for cell CATX@614P3:168.22881862825522 1.0821632453208802

INFO: 10.42.09.234:5762@ - "POST /datadelivery HTTP/1.1" 200 OK

{'producer name': ‘energy-score-assist-rapp', "info type’: ‘energy score’,

‘job_data': {'result_list': [{'cell id': 'CATX@614P3", 'score': 8487.972555848395}]}1

Energy score prediction for cell CATX@614P3:8407.972555048395

INFO: 10.42.09.232:56102 - "POST /datadelivery HTTP/1.1" 260 OK

{ producer_name': load-predictor-assist-rapp’, 'info_type’: 'load_cell prediction’,

'job_data’: {'result_list': [{'cell id': 'CATX@614P3', ‘prediction’: 61.97632598876953, 'accuracy': 1.014294773619123}]}}
load_cell prediction prediction and accuracy for cell CATX@614P3:61.97632598876953 1.814294773619123

INFO: 10.42.0.239:60714 - "POST /datadelivery HTTP/1.1" 20@ OK

Figure 3-63: Intelligence Plane - Control rApp - data obtention
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Figure 3-64: Intelligence Plane - - EUCNC'24 demonstration: Predictors view
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Figure 3-65: Intelligence Plane — Workflow for the deployment of control rApp and non-RT control-loop
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3.7.2.4 Initial benchmark of the Intelligence Plane

This section reports an initial benchmark of the capabilities of the Intelligence Plane to provide data to the
control rApps with a non-RT granularity (i.e., greater than 1 second). Starting from the previous use case, i.e.
a control rApp and three available AIA rApps deployed in the Non-RT RIC, we evaluated the variation of the
excess delay according to the number of consumers, the number of jobs (i.e., the number of simultaneous
subscriptions of the consumer rApp) and the interval required by the control rApp to get all the predictions
(i.e., the period of the control-loop). We calculated the excess delay as the difference between the required
period and the measured period. During the evaluation, a new instance of the control rApp was deployed
every 60 seconds until we reached the maximum number of consumers (i.e., 45, as shown in Figure 3-66 and
Figure 3-67).

We initially compared the results of having a single job versus three simultaneous jobs per control rApp,
respectively labelled as 1-X and 3-X in Figure 3-66. To identify the source of delays, we also compared cases
where the AIA rApps triggered the inference of the ML models in the Al Engine (denoted as 1-1 and 3-1) with
cases where the AIA rApps just send a random value (denoted as 1-0 and 3-0). Results shown in Figure 3-66
show that for a single job, the excess delay was maintained under 1 second during the whole evaluation,
although it started to increase linearly after reaching approximately 30 consumers. In the case of 3
simultaneous jobs per consumer, where we measured the delay needed until the consumer obtained a new
measurement from each job, the excess delay started early to increase linearly, around 15 consumers. This
led to the impossibility of obtaining measurements according to the required interval of one second.
According to the results without requesting the Al Engine, denoted as 1-0 and 3-0 in the figure, which didn’t
experience this linear increase, we can conclude that the excess delay was indeed caused by congestion in
the Al Engine endpoints due to too many requests per second.

Nevertheless, we also evaluated the experienced excess delay in the case of 3 jobs when increasing the
interval or control-loop period of the consumers. As shown in Figure 3-67, higher intervals alleviated the
congestion of the Al rApps caused by the communication with the Al Engine. For instance, with a period of 5
seconds, the delay increase with the number of consumers was almost imperceptible. Note that this period
will be enough for the vast majority of non-RT control-loops, since they are usually designed according to
periods of tens of seconds or minutes.

Finally, note that in this initial validation the Al Engine was deployed in a single server (Intel NUC); therefore,
in an operational deployment with the Al Engine Kubernetes cluster involving multiple nodes, the serverless
operation of Nuclio will prevent the experienced delay by applying horizontal pod scaling strategies. We will
evaluate this approach in following validations during the project.

Increasing number of consumers - Fixed interval (1s), variable number of job with and without ML
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Figure 3-66: Intelligence Plane - Jobs latency with an increasing number of consumers and fixed interval
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Figure 3-67: Intelligence Plane - ML-based jobs latency with an increasing number of consumers and fixed interval

3.8 Summary of Chapter 3

This section provides a summary of the presented uses cases (Table 3-11) and the associated Al/ML-Assisted
Procedures to enhance energy efficiency (Table 3-12).

Use Case

Table 3-11: Summary of Use Cases
Main Objective

and Targeted

Al/ML-Assisted
Procedures

Baseline Scenario

Results of the Initial
Validation

Dimensionality
Reduction

KPls

To reduce data
volume and CPU
cycles in training
predictive models

Supervised
learning XGBoost
Regressor

Assessing when a
model with less
features can be used
without losing
significant accuracy.

Data volume and
processing
minimization in
specific retraining
scenarios.

Computing Resource
Allocation for vRAN

Prediction of the
computing
resources needed
by the vVRAN with
the objective of
reducing energy
consumption.

Reinforcement
learning.
Specifically, the
formulation is
customized for
this specific use
case as a
contextual bandit
problem.

We compare against
the optimal
configuration of the
system, (exhaustive
search in the
solution space) and
SoTA benchmarks in
the literature.

This deliverable
provides an
exhaustive
experimental
evaluation of the
proposed solution.
We evaluate the
convergence,
inference time, and
the performance
w.r.t. SoTA
benchmarks and
realistic traffic traces.
We measured a 17%
of computing
resource savings in
realistic scenarios.

Energy-Efficient 5G
Carrier on/off Switching

Reduce energy
consumption (5G
carriers) and
increase energy
efficiency (4G
carriers) without
impacting QoS

(average UE rate).

Load and energy
predictors based
on XGBoost
Regressor.
Logistic-Regressor
classifier to drive
on/off decision.

Measured energy
consumption of an
actual network
according to MNQ’s
dataset.

Restricted to a high-
loaded site during a
week. Up to 200 kWh
of energy savings
during a week (off
~50% of the time).
Impact on QoS not
evaluated.
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0§
BEGREEN

Use Case

Main Objective

and Targeted

Al/ML-Assisted
Procedures

Baseline Scenario

Results of the Initial
Validation

KPls

Identification of
geographical
regions with high
traffic demands
and poor

Unsupervised
learning
algorithms. In
particular, a

The coverage hole
characterization is
used as input for a
relay placement
algorithm to address

The placement of a

fixed relay to address
a specific coverage
hole avoids
increasing the BS
transmitted power.

ropagation clusterin . .
P p.g_ . 8 the identified The coverage hole
Coverage Hole conditions (e.g. algorithm based coverage holes. The can be addressed
Detection and Relay low RSRP). These | on DBSCAN is & . .
. energy consumption | with a power
Placement regions may be proposed to . . .
reduction with the consumption
addressed by group L
. . placement of relays reduction in the
energy efficient geographical . .
- . . is compared with range between 35%-
solutions based locations with .
. respect to the case 70% depending on
on the problems in
. where no relays are the BSand relay
deployment of different clusters. .
deployed. power consumption
relays.
model.
Take adequate
decisionsqof rela The energy reduction
L y that can be obtained
activation to for the considered
serve UEs with DQN (Deep Q- We compare the )
. . relay is around
poor propagation | Network) that energy consumption
. . . 100Wh each day. It
conditions and combines reduction by depends on the time
Relay adequate Reinforcement deactivating the P

Activation/Deactivation
Process

decisions of relay
deactivation to
save energy
based on the
number of UEs
served by the
relay.

Learning (based
on Q-learning)
and Neural
Networks.

relay with respect to
the case that the
relay is not
deactivated.

the relay is activated.
The maximum energy
consumption that can
be obtained is in the
order 150Wh for
each relay and each
day.

Computing Resource
Allocation for UPFs

Dynamically
adapt the
allocation of CPU
resources to UPF
load in order to
enhance energy

Load predictors
based on XGBoost
Regressor or
Prophet
forecasting.
Additional Al/ML

Consumption of a
VPP-DPDK UPF
server with realistic
traffic and without
energy efficient

Compared to an UPF
configured in
performance mode
to lead with peak
traffic demands,
energy savings could
reach 30%-45%

. methods to be mechanisms. .
efficiency. . depending on data
decided.
load.

Orchestrate the Bayesian Online

virtualized BS and | Learning,

the Al serviced combining

running at the Gaussian . We provide a

We compare against .
edge of the processes used as the optimal experimental
network in a joint | surrogate .p . characterization of
. . . configuration of the
Joint Orchestration of manner. The function, and . the problem under
. . system, (exhaustive .
VRANSs and Edge Al objective is to tailored search in the study, showing the
Services minimize the acquisition . trade-offs among the
. solution space) and . .
energy function to Lo different involved
. SoTA ML solution in .
consumption handle the . variables and
. . the literature. .

subject to a exploration- performance metrics.

minimum value exploitation

of the QoS for the | trade-off.

users.
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Method

Dimensionality Reduction

Table 3-12: Summary of Al/ML-based Methods

Al/ML type

Supervised Learning

Training

Real data obtained from live
networks. Not publicly
available

Inference

Required dimensionality
of feature set for
predictive model.

Computing Resource
Allocation for vRAN / RAN
optimization and control

Reinforcement Learning

Real data obtained from our
experimental platform. The
dataset if publicly available
at https://ieee-
dataport.org/documents/o-
ran-experimental-
evaluation-datasets

The inference time is
analysed in Sec 3.2.2.2.
Suitable to run in the O-
RAN Non-RT RIC.

Energy-efficient 5G carrier
on/off switching

Supervised Learning,
Time series regression

Real data from a Spanish
MNO (70 sites, 2 months).
Private dataset.

Energy consumption of a
carrier, non-RT domain

Energy-efficient 5G carrier
on/off switching

Supervised Learning,
Time series regression

Real data from a Spanish
MNO (70 sites, 2 months).
Private dataset.

Load of a carrier, non-RT
domain

Energy-efficient 5G carrier
on/off switching

Supervised Learning,
Classification

Real data from a Spanish
MNO (70 sites, 2 months).
Private dataset.

5G carrier on/off switching
decision, non-RT domain

Coverage Hole Detection
and Relay Placement.

Unsupervised learning,
clustering algorithm.

No training is required. Real
data that characterises the
time/space distribution of
the users. An example and
details of the dataset is
published in [47]

Coverage hole
characterization, non-RT
domain.

Relay
activation/deactivation
process

Reinforcement Learning.

Real data that characterises
the time/space distribution
of the users. An example
and details of the dataset is
published in [47]

Decision of relay
activation/deactivation,
non-RT domain.

CPU management for
enhancing UPF Energy
Efficiency

Supervised Learning,
Time series forecasting

Real data from a Spanish
MNO (70 sites, 2 months).
Private dataset.

Load of the UPF, non-RT
domain

Joint orchestration of
VRANSs and Edge Al
services / RAN
optimization and control

Reinforcement Learning

Real data obtained from our
experimental platform. The
dataset if publicly available
at https://ieee-
dataport.org/documents/o-
ran-experimental-
evaluation-datasets

Suitable to run in the O-
RAN Non-RT RIC.
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4 Summary and Conclusions

The growing demand for 5G networks has brought significant challenges, particularly in managing the energy
consumption of network infrastructure to achieve sustainability objectives without impacting the quality of
the service and experience. In Work Package 4, the BeGREEN project addresses these challenges by
integrating Al/ML within the O-RAN framework, aiming at enhancing the decision-making of automated
control-loops focused on energy efficiency optimisation. In this context, this BeGREEN D4.2 has presented
the initial evaluation of the BeGREEN Intelligence Plane and of the proposed Al/ML methods to enhance the
energy efficiency in the RAN and Edge domains.

Before presenting the initial validation of the Intelligence Plane in Section 3.7, Chapter 2 described its
architecture, extending the initial design provided in BeGREEN D4.1 and highlighting the implementation
choices. The main conclusions of this deliverable regarding one of its key elements, the Al Engine, are
summarised as follows:

e The implementation of the Al Engine relies on two open-source frameworks: MLRun, which provides
the required Al/ML services and hosts the trained ML models, and Nuclio, which implements the
serverless serving of the ML models.

e ML models are decoupled from control rApps and xApps but exposed to them through associated
Assist Al Engine (AIA) rApps/xApps. This approach allows ML model developers to focus on the model
implementation and optimisation, while rApp/xApp developers can focus on the control logic and
optimisation objectives. It also facilitates ML model reuse by several control rApps/xApps. The
reference model of the AIA rApps/xApps is introduced, highlight the implementation choices and the
integration with O-RAN interfaces.

e The exposure of ML models through AIA rApps in the non-RT RIC is done by exploiting the DME
capabilities of the R1 interface. Particularly, the developed implementation relies on the ICS
component provided by the OSC. This way, model outputs are exposed as information types, while
AlA rApps, which communicate with the model serving endpoints in the Al Engine, perform as data
producers. Finally, control rApps work as data consumers.

e The evaluation of the Intelligence Plane focused on the mentioned points, detailing the
demonstration performed at the 2024 EuCNC & 6G Summit. Particularly, it comprehends the
definition of different information types related to ML models and serverless functions developed
within BeGREEN and hosted in the Al Engine, the deployment of AIA rApps as data producers and
the deployment of a control rApp periodically consuming the outputs of the models. A video
showcasing the demonstration can be found in BeGREEN YouTube channel?®. The evaluation also
includes a benchmarking of the capabilities of the implementation to provide data to the control
rApps with a non-RT granularity, highlighting a trade-off between the number of data consumers
and the periodicity of the control loops.

e Future work regarding the exposure of ML models will mainly consist of the integration of the Al
Engine with the near-RT RIC to demonstrate near-RT serverless serving. Additionally, the
implementation and demonstration of additional Al/ML services such as monitoring and (re)training.

The integration of the non-RT and near-RT RICs towards the management of energy saving optimisations is
another of the key aspects being addressed by the Intelligence Plane. This deliverable presented the design
choices regarding the implementation of energy saving Al policies. Also, it introduced the main xApps that
will be considered to achieve energy efficiency in cell management, e.g. to perform intelligent on/off

26 https://www.youtube.com/watch?v=_NO0JYOSepgc
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switching: the Energy Saving xApp, which manages the operation status of the cells according to the policies,
and the Handover Manager xApp, which optimizes the handover process allowing to apply load balancing
strategies. The independent management of these two xApps could lead to conflicts, for instance between
energy saving policies and QoS or load-balancing policies. Therefore, a collaborative conflict mitigation
approach is also presented in this deliverable. Future work will focus on implementing and demonstrating
the coordination between RICs to manage energy saving optimisations and associated conflicts.

The benefits of integrating Al/ML and O-RAN architecture are exploited by two main solutions presented in
Chapter 3, whose key findings and future work is summarised as follows:

e Compute resource allocation in vRAN: Considers the problem of allocating resources to vBS in vVRAN
scenarios under shared computing infrastructure. To this end, a RL-based solution is proposed, which
considers the trade-off between channel quality, network demand, the CPU resources being
assigned to the pool of vBS and the interference among vBS processes (noisy neighbour problem).
Experimental evaluation demonstrates the feasibility of the proposed solutions, which can be
applied as a non-RT control loop due to its low inference time, and the energy savings gains,
achieving up to 17% reduction in overall computing resource usage without sacrificing throughput.
Future work will consider an alternative approach, based on optimising the utilisation of assigned
resources by the vBSs.

e Al/ML and data-driven strategies for energy-efficient 5G carrier on/off switching: Explores energy
saving opportunities in a 5G NSA deployment by switching off 5G cells and offloading UEs to 4G cells.
The presented analysis is based on real data from an MNO, considering the cases where 5G PRBs can
be offloaded to the 4G cells of the same site and sector. In the case of a specific high-loaded site in
the city centre, this approach could result in the 5G cell being deactivated 56% of the time during
the week. According to this scenario, different data and ML-driven approaches are considered to
rule the cell on/off switching decision. Future work will extend the analysis of energy saving
opportunities to all the sites of the dataset, also analysing the impact on the QoS of the UEs.
Additionally, more advanced ML-assisted methods will be proposed.

The integration of new technologies, which could enhance the energy efficiency of the network, but which
are currently not being addressed by O-RAN architecture, is also being addressed in the BeGREEN project. In
particular, this deliverable discussed the integration of RIS, ICAS and Relays. The integration of RIS will require
extending E2 and O1 interfaces, denoted as E2+ and O1+in BeGREEN architecture, to allow near-RT and non-
RT management by the RIS Actuator. In the case of E2, new SMs are proposed to enable real-time control
and monitoring of the smart surfaces. Regarding ISAC, possible options to process the radio signals at
different levels (i.e., at the O-RU, O-DU, O-CU or near-RT RIC) are presented. Future BeGREEN deliverables
will further elaborate the implications on the Intelligence Plane and RAN domain integration.

In the case of the Relays, it is proposed an integration based on O1 interfaces extensions, denoted as O1+in
the BeGREEN architecture, and a control component at the SMO which allows to apply non-RT optimisations.
The proposed solution covers the full spectrum of relay-related procedures and their integration within the
Intelligence Plance, starting with the detection of coverage holes, following with the identification of Relay
UEs or placement for fixed relays, and concluding with the activation and deactivation of relays according to
network conditions. In all the cases, specific Al/ML-based algorithmic solutions are presented and evaluated.
Initial results, which are based on simulations according to a realistic scenario in a University Campus,
characterize a specific coverage hole and show an energy consumption reduction in the range between 35%-
70% depending on the BS and relay energy consumption model. Future work will consider addressing all the
identified coverage holes with fixed relays and/or RUEs.

Regarding the Edge domain, and in a similar way to O-Cloud management, the BeGREEN architecture
proposes interfaces and components between the SMO and the Edge controller which will allow to monitor
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edge resources and apply dynamic resource allocation policies. Two Al/ML-assisted methods related to this
area are proposed:

e Trafficcaware compute resource management to enhance UPF energy efficiency: Addresses the
dynamic management of the edge compute resources allocated to UPF according to the variation of
the traffic demand. The work presented in BeGREEN D4.1 is extended by incorporating a high-
performance and more realistic, open-source implementation of the UPF using VPP and DPDK. The
energy consumption characterization of this implementation reveals the necessity for energy-saving
approaches, as it exhibits high CPU usage even in low-load scenarios. To this end, methods based on
CPU frequency and thread scaling are evaluated. According to results in an experimental testbed and
compared to an UPF configured in performance mode to lead with peak traffic demands, energy
savings could reach 30%-45% depending on data load. Future work will integrate these methods with
an MlL-based decision-making process, utilizing UPF traffic forecasting to optimize resource
management.

e Joint orchestration of VRANs and Edge Al services: Based on the experimental characterization
presentedin D4.1, it is analysed the intertwined relationships between Edge Al services performance,
the resources allocated to vBSs and Edge Al services, and the energy consumption of the RAN and
Edge domains. A Bayesian online learning algorithm is proposed to tackle this challenge, formulated
as a contextual bandit problem. Future work will include the experimental evaluation of the
proposed algorithm and its comparison with state-of-the-art ML approaches in terms of data
efficiency and adaptability.

The Intelligence Plane also incorporates specific metrics to characterize the energy efficiency of the
individual managed entities: the Energy Score and the Energy Rating. These metrics help to identify areas
where energy consumption is highest and where optimizations can have the greatest impact. They not only
aid in monitoring the effectiveness of energy-saving strategies but also enable dynamic adjustments through
the proposed Al/ML-assisted control loops. The computation of these two metrics has been implemented as
built-in serverless function in the Intelligence Plane through the Nuclio framework, and the exposure of the
Energy Score function was demonstrated in the Intelligence Plane initial validation.

Additionally, BeGREEN also addresses the energy consumption and efficiency of the ML models themselves.
In Chapter 3, a method is presented to reduce the dimensionality of the training data without compromising
the accuracy of models, such as predictors. The method evaluates the importance of the model features and
gradually discards them until accuracy is affected. An initial evaluation, using an energy consumption
predictor, is presented, showing that this method can reduce CPU cycles during retraining by up to 85%.
Finally, note that in this deliverable the energy consumption of specific models is also reported, particularly
the ones related to the relay-enhanced control use case. Future work will extend this analysis to other
relevant ML models being proposed in BeGREEN, evaluating the trade-off between the achieved energy
saving gains and the required energy consumption to train and serve the models.
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