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Executive Summary 
This document, BeGREEN D4.2 deliverable, presents the development status and the initial validation of the 
BeGREEN Intelligence Plane and the methods assisted by proposed Artificial Intelligence (AI) and Machine 
Learning (ML) to enhance the energy efficiency of the Radio Access Network (RAN) and Edge domains. This 
work builds on the concepts established in BeGREEN D4.1 [1], by introducing and refining the architecture, 
mechanisms, and use cases designed to reduce energy consumption without impairing network performance. 
The deliverable also reports an initial evaluation of the proposed solutions.  

BeGREEN D4.2 is structured in two main chapters. The first one deals with the architecture of the BeGREEN 
Intelligence Plane, a cross-domain framework designed to integrate AI/ML processes within the O-RAN 
architecture with the objective of enhancing the decision-making process of rApps and xApps. As the main 
novelty, the Intelligence Plane incorporates the AI Engine, which hosts ML models and associated services, 
offloading them from the RAN Intelligent Controllers (RICs). By decoupling the AI/ML services from the O-
RAN control loops, the BeGREEN Intelligence Plane offers a modular and reusable framework that allows for 
independent model development and deployment. Additionally, the deliverable discusses extensions to 
allow the integration of Edge and Core domains, and of RAN technologies which are currently beyond the 
scope of traditional O-RAN implementations like Relays, Reconfigurable Intelligent Surfaces (RIS), and 
Integrated Sensing and Communication (ISAC). Finally, it is examined how to manage and mitigate conflicts 
across the RICs between contradictory optimisation policies.  

The second main chapter is dedicated to the evaluation of AI/ML-based solutions that enhance energy 
efficiency, including the Intelligence Plane itself. First, it presents dimensionality reduction techniques to 
minimize data inputs for ML models without impacting the model accuracy. This approach reduces data 
processing overhead and improves the energy efficiency of ML models. The compute resource allocation in 
virtualized RAN (vRAN) scenarios is also analysed, and Reinforcement Learning (RL) algorithms to dynamically 
decide on resource allocation according to network load and power consumption patterns are proposed. 
Another proposed strategy is the carrier on/off switching technique, which uses ML to predict traffic patterns 
and switch off unnecessary 5G carriers during low-demand periods, significantly reducing energy usage by 
offloading traffic to 4G carriers. The deliverable also details AI/ML approaches controlling fixed and UE-based 
relays to ensure that network resources are utilized more effectively, leading to both improved coverage and 
reduced energy consumption. In particular, the proposed mechanisms address coverage hole detection 
(CHD), fixed relay placement, candidate Relay UE (RUE) identification and dynamic relay activation and 
deactivation. Regarding the Edge domain, two main uses cases and methods are considered. The first one 
proposes a dynamic allocation of the compute resources dedicated to the User Plane Function (UPF) 
according to the forecasted traffic demand. The second one proposes a Bayesian online learning algorithm 
addressing the joint orchestration of vRANs and Edge AI services, aiming at minimizing overall power 
consumption while meeting the service's performance constraints. 

Initial evaluations of these AI/ML-assisted solutions show promising results in terms of energy savings and 
performance optimization in both the RAN and Edge domain. The deliverable includes use case studies, 
technology characterization and experimental validations demonstrating how these algorithms can achieve 
substantial energy reductions in both the RAN and Edge domains. In the case of the Intelligence Plane, the 
reported validation assesses the baseline architecture and operations, focusing on the AI Engine and the 
Non-Real-Time RIC. The final evaluation of the Intelligence Plane and the AI/ML-assisted mechanisms will be 
reported in the upcoming BeGREEN D4.3.  
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 Introduction 
Despite being more energy efficient than predecessor generations, the transition to 5G has raised the energy 
consumption of the network due to the features required to support new advanced services. In this context, 
reducing energy consumption has emerged as a key challenge for network operators, both in terms of 
environmental impact and operational costs. As highlighted by ITU in the IMT-2030 report on future trends 
[2], one of the main goals of 6G will be the reduction of network-wide energy consumption. To address this 
problem, the O-RAN Alliance is defining control mechanisms that allow managing energy saving features in 
a multi-vendor O-RAN environments [3]. However, specific energy saving algorithms, are left open for vendor 
differentiation. Additionally, the integration of AI/ML 1 will be key to learn from historical data, proactively 
adapt to evolving network dynamics, and drive automated control decisions. 

To address these challenges, BeGREEN proposes an Intelligence Plane, which works as a cross-domain 
management entity, integrating control and monitoring functions across RAN, Core and Edge domains, and 
fostering the creation of advanced ML models. The proposed framework incorporates an AI Engine to the O-
RAN architecture. This component decouples the provision of AI/ML services, including the serving of ML 
models, from the Service Management and Orchestration (SMO) and the RAN Intelligent Controllers (RICs) 
elements. This allows independent ML model and control algorithms development, facilitating the reusability 
of ML models like predictors by different rApps and xApps. In addition, new interfaces and control 
components are incorporated to the O-RAN architecture to manage and monitor Edge and Core domains, 
and to support RAN technologies currently not being considered by the specification: Relays and Relay User 
Equipment (RUE), Reconfigurable Intelligent Surface (RIS) and Integrated Sensing and Communication (ISAC). 
The Intelligence Plane also includes specific BeGREEN metrics, the Energy Score and the Energy Rating, which 
are used to determine the absolute and relative performance of the network entities in terms of energy 
efficiency.  

Once incorporated to the O-RAN architecture, these proposed components and technologies can be 
exploited by novel AI/ML-driven control mechanisms to reduce the energy consumption of the RAN and Edge 
domains. In the RAN, the proposed energy-saving optimisations focus on optimal compute resource 
allocation of virtual RANs (vRANs), dynamic 5G carrier deactivation and traffic offloading, and the utilisation 
of Relay and RIS technologies to enhance energy efficiency. In the Edge, resource allocation strategies are 
also applied to optimise the energy consumption of User Plane Function (UPF) and of Edge AI services. 
Additionally, methods to reduce the data dimensionality of ML models are also discussed, aiming at 
minimizing energy consumption without impacting model accuracy.  

BeGREEN D4.2 describes the progress on the development of the proposed solutions and presents their 
initial validation. The deliverable is structured is as follows: 

• Chapter 2 describes the architecture of the Intelligence Plane. Building on the foundations 
established in BeGREEN D4.1 [1], the introduced components and interfaces are further detailed and 
developed towards specifying the final BeGREEN architecture that will enable the proposed solutions 
to enhance energy efficiency at the RAN and Edge domains. Three main entities are considered: 

o AI Engine: The key element of the Intelligence Plane, providing the framework to implement 
and expose AI/ML services. This chapter describes how it is implemented using available 
open-source frameworks and integrated with the RICs through the AI Engine Assist (AIA) 
rApps and xApps. Additionally, the current definition and implementation of the Energy 
Score and Energy Rating functions is detailed. 

 
1 AI and ML terms denote related and overlapping concepts. In fact, ML can be seen as a subset of AI. In this document, the term 
AI/ML will be used to denote AI and/or ML techniques. 
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o SMO and non-RT RIC: Developments are focused on the integration with the AI Engine to 
expose ML models to rApps implementing optimisation control-loops and on the integration 
with the near-RT RIC through energy saving-based A1 policies. To this end, the data models 
of the AIA rApps and of the A1 policies are detailed.  

o Near-RT RIC: Two xApps are presented. On the one hand, the Energy Saving xApp manages 
the operation status of the cells according to the energy saving policies. On the other hand, 
the Handover Manager xApp optimizes the handover process allowing to apply load 
balancing strategies. The join operation of both xApps will be required when applying energy 
saving strategies such cell on/off switching. Additionally, in this section a novel conflict 
mitigation and management strategy among contradictory policies and RAN control actions 
is discussed.     

Once introduced its main architecture, Chapter 2 presents the integration of the Intelligence Plane 
and the RAN and Edge domains. First, it briefly presents their relationship with O-RAN O-gNB and O-
Cloud, focusing on the application of O-RAN aligned energy saving strategies. Secondly, it describes 
the designed approach to integrate RAN technologies currently not being considered by O-RAN, like 
RIS, ISAC and Relays. In this case, the principal aim is to define the interfaces, components and 
procedures required to apply the energy saving strategies exploiting these technologies being 
considered in BeGREEN. Finally, Chapter 2 finalizes describing the approach to integrate the Edge 
domain to enable the monitoring and control of edge resources.   

• Chapter 3 presents the initial evaluation of AI/ML-assisted procedures being developed in BeGREEN, 
including the Intelligence Plane itself. In relation to the methods introduced in BeGREEN D4.1 [1], 
this deliverable refines and extends the description of the solutions and of their application 
scenarios 2. Then, results related to performed evaluations are presented. The chapter is structured 
as follows: 

o Dimensionality reduction: This method proposes a solution to systematically reduce the 
input data required to train and retrain models such as predictors. The objective is to 
enhance the energy efficiency of the models without impacting the required model accuracy. 
Initial results are based on a real dataset provided by a Mobile Network Operator (MNO).  

o Compute resource allocation in vRAN: Addresses the problem of compute resource 
allocation in virtualized RAN under shared computing infrastructure. According to an initial 
experimental characterization, proposes Reinforcement Learning (RL) based solution which 
adapts the compute resources allocated to virtual Base Stations (vBSs) according to network 
demands, avoiding over- and under-provisioning issues. The method is evaluated 
experimentally in a testbed.  

o AI/ML and data-driven strategies for energy-efficient 5G carrier on/off switching: This 
solution considers scenarios with capacity and coverage cells, as is the case of current 5G 
Non-Stand Alone (NSA) deployments, in order to propose on/off switching and traffic 
offloading strategies. According to the real data from a MNO, available energy saving 
opportunities are studied, evaluating how different heuristics and ML-driven strategies 
could be applied to match them.  

o AI/ML-based algorithmic solutions for relay-enhanced RAN control: Proposes the utilisation 
of Relays and RUEs to enhance energy efficiency of areas with high traffic demands and poor 
propagation conditions, avoiding the installation of new cells or the increase of cell 
transmission power. Several AI/ML-based methods are defined to provide a complete 

 
2 This deliverable does not include an evaluation of the RIS integration into O-RAN, which will be reported in D4.3.  
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solution, including CHD, fixed relay placement decision, identification of candidate RUs, and 
relay activation and deactivation. Initial evaluation is based on simulations according to a 
realistic scenario in a University Campus. 

o Traffic-aware compute resource management to enhance UPF energy efficiency: This 
method deals with the dynamic management of the compute resources allocated to a UPF 
according to the traffic demand. According to the experimental characterization of a high-
performance open-source UPF implementation, energy efficient strategies are proposed 
and evaluated. Proactive management of the strategies will be provided by ML models 
forecasting the traffic demand.  

o Joint orchestration of vRANs and Edge AI services: Addresses the problem of optimizing the 
allocation of resources to vRANs and Edge AI services, considering the intertwined 
relationships and trade-offs between RAN and Edge configurations and their impact on 
performance. To solve it, and according to the results from an experimental characterization, 
an online learning algorithm formulated as a contextual bandit is proposed.  

o Intelligence Plane validation: Presents the initial evaluation of the Intelligence Plane, 
focusing on the integration of the AI Engine and Non-RT RIC components through AIA rApps. 
The validation is based on the demonstration performed at the 2024 EuCNC & 6G Summit. 

• Finally, Chapter 4 presents the summary and conclusions, highlighting the key findings reported in 
the validation section and outlining the main directions for future work, which will be detailed in the 
next deliverable, BeGREEN D4.3.  
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 BeGREEN Intelligence Plane  
This chapter is devoted to the description of the BeGREEN Intelligence Plane architecture. As was introduced 
in BeGREEN D4.1 [1], the Intelligence Plane aims at providing the required AI/ML control and management 
plane functions to the O-RAN architecture [4] with the main objective of enhancing the ability to perform 
RAN optimisations. In the case of BeGREEN, these capabilities are exploited to reduce the overall energy 
consumption of the RAN and Edge infrastructure. To this end, in addition to the Service Management and 
Orchestration (SMO), the Non-Real-Time RAN Intelligent Controller (Non-RT RIC) and the Near-Real-Time 
Intelligent Controller (Near-RT RIC), the Intelligence Plane incorporates the AI Engine, which provides a 
serverless execution environment hosting the AI/ML models, offering inference and training services to the 
rApps/xApps by following a loosely coupled approach. To enhance reusability and efficiency, the AI Engine 
can also host functions, such as the BeGREEN Energy Score and Energy Rating [1][5]. These functions may be 
used to orchestrate specific rApps or xApps, or to configure them according to the areas or components that 
require optimisations.   

The chapter is structured as follows. Section 2.1 describes in detail the architecture of the BeGREEN 
Intelligence Plane, including the AI Engine and the RICs, and extending the description provided in BeGREEN 
D4.1 [1]. According to this architecture, Sections 2.2 and 2.3, respectively introduce the required integrations 
with RAN and Edge domains to provide the energy saving optimisations being proposed within the scope of 
the BeGREEN project. Hence, the main focus of this section is to analyse the alignment with the O-RAN 
specification, and, when necessary, to specify the novel components, interfaces or procedures required to 
develop BeGREEN proposed optimisations and to integrate them into the Intelligence Plane framework. 

BeGREEN focuses on energy-efficient optimizations within the RAN and Edge infrastructure domains. Hence, 
the Intelligence Plane works as a cross-domain management entity, integrating control and monitoring 
functions across RAN and Edge domains. This integration facilitates the creation of advanced ML models that 
can be utilized by analytics consumers, like rApps and xApps, to implement energy-efficient automated 
control loops. Therefore, the architecture of the BeGREEN Intelligence Plane, as depicted in Figure 2-1, 
consists of the O-RAN SMO and the RICs, which are extended with additional control and management 
capabilities, plus the AI Engine, which hosts the ML models and implements the required AI/ML services. 
Figure 2-1 also illustrates how the Intelligence Plane interacts with the RAN and Edge domains, what in some 
cases requires of new/extended interfaces, as will be detailed in the following paragraphs.  

Regarding the RAN domain, as introduced in Section 2.2, in addition to the energy-efficient management of 
O-Cloud and O-gNB components through O-RAN compliant components and interfaces, the Intelligence 
Plane aims to incorporate control over RIS, fixed relays, or Relay User Equipment (UEs with relaying 
capabilities), which are currently beyond the scope of O-RAN. Thus, BeGREEN proposes new interfaces or 
extensions termed O1+ and E2+ for monitoring and controlling these elements and integrating them within 
the Intelligence Plane at the non-RT and near-RT domains, respectively. Additional information on these 
interfaces is provided in the sections devoted to these solutions. 

As depicted in Figure 2-1, the SMO incorporates Edge control functions in addition to other common O-RAN 
functions, such as O1 and O2 terminations. As introduced in Section 2.3, this allows the definition of 
optimisation strategies targeting energy efficiency, which can exploit the individual or joint management of 
RAN and Edge resources and the ML models available in the AI Engine. As shown in Figure 2-1, the required 
interface to enable the integration of SMO and Edge Resource Controller is termed as O2+, since it leverages 
functionalities of O-RAN’s O2 interface.  
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Figure 2-1: BeGREEN Intelligence Plane architecture 

In the case of the SMO plus Non-RT RIC and the Near-RT RIC, BeGREEN considers two specific 
implementations. On the one hand, the SMO plus the Non-RT RIC leverage the O-RAN Software Community 
(OSC) implementation 3, by focusing on exposing the AI/ML services available at the AI Engine through the 
R1 interface, and on the management of energy-efficiency policies through the A1 interface. On the other 
hand, the Near-RT RIC is based on a commercial cloud-native solution, dRAX 4, developed by Accelleran. Note 
that, in addition to these frameworks, which will be integrated and used to demonstrate the Intelligence 
Plane in the WP4 and WP5 validations and demonstrations, other specific implementations may be used to 
validate technologies developed within WP4 but with a lower Technology Readiness Level (TRL).  

Finally, completing the Intelligence Plane architecture, the AI Engine hosts ML models to offload inference 
tasks from the RICs and implement the necessary AI/ML workflows or services. As shown in Figure 2-1, the 

 
3 https://lf-o-ran-sc.atlassian.net/wiki/spaces/RICNR/overview 
4 https://accelleran.com/ran-intelligent-controller/ 

https://lf-o-ran-sc.atlassian.net/wiki/spaces/RICNR/overview
https://accelleran.com/ran-intelligent-controller/
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AI Engine implements AI/ML services or pipelines including model management, monitoring, training, 
serving, and a datalake with prepared data. The models are served in a serverless way, which enables 
efficient scaling of workloads in production. Besides ML models, the AI Engine will host other functions 
heavily used by rApps/xApps, such as the BeGREEN Energy Score and Rating calculations. These Key 
Performance Indicators (KPIs) will be used to assess the energy efficiency of the network and its components 
and applied optimizations, helping to identify areas or components with low efficiency and triggering the 
required optimizations. These models and functions are exposed to the control rApps/xApps implementing 
energy efficiency optimisations though AIA1 and AIA2 BeGREEN interfaces plus associated AI Engine Assist 
rApps/xApps, what allows to decouple the implementation of control-loops from the management of ML 
models. As will be detailed in the next subsection, this facilitates model reusability by different control 
rApps/xApps and allows the integration of AI/ML workflows through the AI Engine independent of the RICs 
implementation. A similar approach could be adopted for Edge and Core domains, using AIA3 and AIA4 
BeGREEN interfaces to expose AI Engine AI/ML services to Edge applications or Network Data Analytics 
Function (NWDAF) analytics. Nevertheless, this concept is no further elaborated in BeGREEN, and these 
interfaces are only considered for monitoring purposes. 

Next subsections detail the implementations of each of these main components.  

2.1 AI Engine  
The AI Engine is the key component of the Intelligence Plane, providing the framework to implement and 
expose AI/ML services. Figure 2-2 depicts its main components and interfaces, and how it integrates with 
the RICs. Conceptually, it entails three main design decisions: 1) loosely coupled approach, 2) model-based 
AI/ML services, and 3) serverless inference, whose characteristics are described as follows: 

1) Loosely coupled approach: The models are hosted in the AI Engine and exposed to the rApps/xApps 
rather than being embedded in the control rApps/xApps that require their outputs. Consequently, 
any control rApp/xApp can access the outputs of the ML model, which are exposed as data types 
(e.g., offering load or energy predictions for specific cells), promoting model reuse. This solution 
allows ML model developers to focus on the model implementation and optimisation, while 
rApp/xApp developers can work on the control logic independently of how the model will be trained 
and served.  

2) Model-based AI/ML services: As depicted in Figure 2-2, each ML model will expose its own data 
processing, training, monitoring and inference services. These services will be managed by dedicated 
rApps/xApps that, in the BeGREEN architecture, they are denoted as AI Engine Assist rApps/xApps 
(AIA rApp/xApp). Mainly, these AIA Apps are responsible for exposing the ML model outputs to the 
control Apps by communicating with the inference service of each model in the AI Engine; in the case 
of the Non-RT RIC the exposure will be done through the R1 interface, while in the Near-RT RIC it will 
be done through the message infrastructure or databus. AIA apps may also implement operations to 
feed the model dataset with new RAN data, to monitor or to enable the monitoring of model 
accuracy and drift, and to trigger model retraining. Nevertheless, pre-trained or offline trained 
models will be also supported by incorporating them to the AI Engine and exposing their inference 
service.  

3) Serverless inference: BeGREEN AI Engine implements serverless inference, allowing the deployment 
of ML models on either servers or clusters separate from the RICs, thus enabling offloading through 
serverless computing and hardware acceleration. Nevertheless, in the case of near-RT inference, 
specific nodes could be specified to the required near-RT decision-making (e.g. the same server 
hosting the Near-RT RIC or collocated servers in the same edge). 
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Figure 2-2: AI Engine – Architecture 

 
Figure 2-3: AI Engine - MLRun MLOps pipeline 

According to these requirements and design decisions, the implementation of the BeGREEN AI Engine is 
based on the MLRun framework 5. MLRun is designed to streamline the ML lifecycle on Kubernetes and 
covers the whole ML pipeline. As depicted in Figure 2-3, it includes among others: (1) data ingestion and 
processing, (2) model development and training, (3) model serving and (4) model monitoring. MLRun uses a 
MinIO 6 service as shared storage for artefacts and accesses it using the S3 protocol. MinIO is a high-
performance, S3 compatible object store. It is built for large scale AI/ML, datalake and database workloads. 
It is software-defined and runs on any cloud or on-premises infrastructure. Additionally, MLRun also allows 
to incorporate pre-trained models into the serving and monitoring pipelines. 

 
5 https://www.mlrun.org/ 
6 https://min.io/ 

https://www.mlrun.org/
https://min.io/
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Figure 2-4: AI Engine - MLRun real-time serving pipelines 

Finally, MLRun integrates Nuclio 7  for serverless model serving. Nuclio is an open-source serverless 
computing platform designed for high-performance applications, particularly in data processing, real-time 
analytics, and event-driven architectures. It abstracts away the complexities of infrastructure management, 
allowing developers to focus solely on writing and deploying functions or microservices. Using Nuclio, MLRun 
can deploy real-time pipelines which are served through an Application Programming Interface (API), as 
depicted in Figure 2-4. When used within a Kubernetes cluster, Nuclio can exploit Kubernetes features that 
allow to specify needed resources (e.g., CPU, memory and GPU)[6] and node affinity[7]. These features could 
be exploited to train and serve models that require hardware acceleration or a specific deployment in nodes 
located at the edge, such as the exposition of Near-RT inference to the xApps. 

As previously introduced, the exposure of ML models hosted in the AI Engine to the RICs is done by the AI 
Engine Assist rApps or xApps. The objective of these Assist Apps is to decouple the management of models 
from the RICs and from the control rApps/xApps exploiting them, also allowing the specific handling of each 
specific model. For instance, pre-trained models that are deployed at the AI Engine just for inference, may 
not require a training and/or monitoring service to be implemented in the associated AIA rApp/xApp. 
Similarly, the needs of data processing could be different for each model (e.g., real-time or batch data, 
exposure through REST API, stream systems or databases, etc.). Therefore, BeGREEN AI Engine plus the AIA 
rApps/xApps allow the ML Developer to decide how to implement the required AI/ML services for a specific 
model with no impact on control rApps/xApps. Also, ML developers can decide which modules should be 
implemented in the AIA rApps and/or the xApps associated to the same model. Figure 2-5 depicts the 
reference model for the BeGREEN AIA xApps/rApps, which is described as follows: 

 
Figure 2-5: AI Engine - AIA rApps/xApps reference model 

 
7 https://nuclio.io/ 

https://nuclio.io/
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• Data processing control: Its main function is to consume and process data from O-RAN or external 
domains, preparing it for training or inference services. The data, which is processed as real-time 
data or as batch data, can be exposed directly to the inference control module, to the AI Engine 
through AIA1 or AIA2 interfaces for training or monitoring, or to external datalakes (e.g., for offline 
training outside the AI Engine). Also, communication with the training control module may occur to 
manage training operations. Finally, the A1-ML interface may allow the exchange of processed data 
between AIA rApps and xApps of the same model.  

• Training control: Triggers the (re)training of models in the AI Engine, for instance according to inputs 
from the monitoring control module. As aforementioned, communication with the data processing 
control module may occur to prepare the collection and processing of the needed data.  

• Monitoring control: Its main function is to monitor the performance of the model. Monitoring may 
be triggered according to inference outputs or by internal logic (e.g., according to a period). A 
possible output may be stopping the inference and/or triggering model retraining. The A1-ML 
interface may be used to exchange information between the monitoring controls of AIA rApps and 
xApps associated to the same model. For instance, to trigger model retraining by the rApp training 
control module in case this module is not implemented in the xApp, or to stop the inference being 
performed by xApps in case the monitoring module of the rApp has additional information (e.g., 
obtained from different Near-RT RICs).  

• Inference control: Performs inference by getting processed data from the data processing control 
module and triggering the model serving at the AI Engine through AIA1 or AIA2 interfaces. In the 
case of the Non-RT RIC, the inference results are exposed to control rApps through R1 interface (see 
Section 2.1.2) or to control xApps through A1-EI interface (enrichment information). In the case of 
the Near-RT RIC, the exposure to control xApps happens through the Near-RT RIC databus or 
datalake, according to the vendor implementation.   

An initial validation of the AI Engine and the AIA rApps can be found in Section 3.7.  

 Energy Score and Rating 
The energy scoring and rating functions in BeGREEN calculate the energy efficiency in the network at the 
level of any component that measures both the volume of data that it transmits and its energy consumption. 
The definition of energy efficiency used as the metric for energy score in the context of the BeGREEN project 
is taken from the Next Generation Mobile Networks (NGMN) 2015 White Paper [8], which states “Energy 
efficiency is defined as the number of bits that can be transmitted per Joule of energy”. Accordingly, the unit 
that energy score exposes is expressed in bits per Joule. 

The energy rating is a relative measure of components of the same type in the network as regards their 
comparative energy efficiencies. Together, these measures can be used within the project as an indicator of 
which areas of the network would benefit from additional orchestration of rApps/xApps for achieving 
maximum energy efficiency. The following calculations are applicable to these measurements. 

The Energy Score Es can be calculated as Data Volume Dv divided by Energy Consumption Ec: 

𝑬𝑬𝑬𝑬 =
𝑫𝑫𝑫𝑫

𝟑𝟑.𝟔𝟔 · 𝑬𝑬𝑬𝑬
    

The Data Volume can be calculated as: 

𝑫𝑫𝑫𝑫 = 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + 𝑫𝑫𝑫𝑫𝑼𝑼𝑼𝑼 

where DvDL and DvUL represent the Downlink (DL) and Uplink (UL) Data Volume. 

When using a throughput counter rather than a data volume counter, it may be necessary to account for 
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length of period for the throughput measurement if it is measured using a time-relative measurement such 
as Mbps, or megabits per second. 

𝑫𝑫𝑫𝑫 = (𝑻𝑻𝑻𝑻𝑫𝑫𝑫𝑫 + 𝑻𝑻𝑻𝑻𝑼𝑼𝑼𝑼) · 𝜟𝜟𝜟𝜟 

where ThDL and ThUL are the average downlink and uplink throughput measured in the gNB, respectively, and 
ΔT is the reporting period. 

Although not based on ML models, the energy score and energy rating functions will be provided within the 
AI Engine, making them accessible to other BeGREEN components in the architecture. Having absolute as 
well as relative measures of energy efficiency will aid the identification of the how much the energy saving 
functions of BeGREEN are contributing to the energy savings achieved in each component of the network. 

Energy Score: 

The energy score function in BeGREEN’s AI Engine communicates with the Non-RT RIC via the AIA1 interface 
and with the Near-RT RIC via the AIA2 interface, as depicted Figure 2-2. The energy score function is 
implemented as a serverless function hosted by the Nuclio component in the MLRun framework. It is 
available at a HTTP endpoint. It will retrieve the energy score in bits/joule for a component on being called 
with the data volume and energy consumption for the relevant component. 

Energy Rating: 

The energy rating function is also exposed through the AIA interfaces. Implemented as a serverless function, 
it retrieves a relative energy rating for a network entity as a quintile (i.e., A, B, C, D or E). The energy ratings 
are calculated, if possible, from a dataset containing data volume and energy consumption data for all 
available entities of a specific type (e.g., CU, DU, Cell) in the network/slice/region by reference to recent 
historical data. It is recommended at least to use 24 hours of historical data in order to have a broad picture 
of the relative energy efficiency of the entities being compared. 

The energy rating function, which is also accessible as a serverless function in Nuclio through a HTTP endpoint, 
stores a record of the energy ratings into the datalake of the AI Engine. This allows subsequent invocations 
of the function to be returned more quickly if the energy ratings for the category of component have already 
been calculated recently. Recalculation of the energy ratings for each component type is also possible where 
the data used to calculate the ratings is older than desired. 

Table 2-1 corresponds to an output from the energy rating function that shows the energy score quintile for 
each requested cell relative to all other cells in the dataset. 

Table 2-1: Energy Score and Energy Rating Examples 

Cell Data Volume (kbits) Energy Consumption (Wh) Energy Score (bits/J) Energy Rating 

Cell A 871446613 4960 48804 A 

Cell B 890397029 9750 25367 C 

Cell C 79307499 4168 5285 E 

 SMO and Non-RT RIC 
The SMO and Non-RT RIC components of BeGREEN have two main functionalities, as depicted in Figure 2-6. 
Firstly, to host the required control rApps to create the automated non-RT control-loops, which implement 
and manage the cross-domain optimisations targeting energy efficiency. Secondly, to expose to these rApps 
AI/ML services (AI Engine), xApp policies (Near-RT RIC), and RAN and Edge services (SMO). 
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Figure 2-6: SMO and Non-RT RIC – Architecture 

 
Figure 2-7: Non-RT RIC - Data model of the BeGREEN AI Engine assist rApp information types 

Implementation-wise, BeGREEN is focused on the integration of the Non-RT RIC with the AI Engine and with 
the Near-RT RIC with the objective of validating the Intelligence Plane. Therefore, specific details about SMO 
functions related to O1 and O2 interfaces, and their extensions O1+ and O2+, which will have a lower TRL 
level, can be found in Sections 2.2 and 2.3.  

As introduced in Section 2.1, the integration of the RICs and the AI Engine will be done through the AI Engine 
Assist rApps and xApps. While the main functionalities of the AIA rApps/xApps were previously introduced, 
this section will focus on of their exposure to control rApps. To this end, the Data Management and Exposure 
capabilities (DME) of the R1 interface are exploited [9], which simplifies the communication between data 
producers and data consumers. As it was presented in BeGREEN D4.1 [1], implementation-wise, BeGREEN 
leverages the Information Coordination Service (ICS) component, provided by the OSC [10]. This element 
allows the registration of specific information types, which in the case of ML models consist of the ML model 
outputs when doing the inference. Figure 2-7 shows the followed data model, where the Job Definition 
groups the required input parameters (e.g., cell ids, period) and the Job Data consists of the output 
parameters (e.g., cell ids, output of the model, accuracy of the prediction, etc.). 



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

27 

 
BeGREEN [SNS-JU-101097083] 

 
Figure 2-8: Non-RT RIC - Data model of the BeGREEN AIA rApps 

 
Figure 2-9: Non-RT RIC - Data model of the BeGREEN Control rApps 

Once the information type is registered in the ICS through the Non-RT RIC, the deployment of the AIA rApp 
triggers the registration of a producer for the associated information type. The producer only needs to 
declare an URL for creating the subscriptions or jobs, which will follow the format defined in the information 
type, and another one for periodic health check from the ICS. In the case of AIA rApps, producers will be also 
linked to a specific ML model or function (e.g., for energy score calculation) in the AI Engine by specifying the 
serving URL of the model or function in Nuclio (Model Callback URL). Figure 2-8 depicts the main fields of the 
AIA rApp model.  

The information type consumers, i.e. the control rApps, declare the requested information types and their 
configuration (according to the job definition), together with the URL where they expect the results to be 
delivered, as shown in Figure 2-9. According to this information, the ICS/R1 component searches for the 
needed producers and creates the required jobs or subscriptions. Finally, the producers will start sending 
the required data to the consumers as defined in the jobs. Additional details on the implementation of the 
required workflows related to the AIA rApps operations can be found in Section 3.7. 

In BeGREEN, the basic interaction between the Non-RT RIC and the Near-RT RIC will happen through the A1 
interface [11], mainly though A1-P to manage the policies related to energy efficiency optimisation. 
Additionally, other A1 functions, such as A1-EI and A1-ML, shall be implemented and validated according to 
the requirements of the AI Engine component, as was introduced in Section 2.1. Regarding energy saving 
optimisations, the last specification of O-RAN already considers the definition of specific policy and data 
types to manage them [12]. The main novelties of this release are: 

• Energy saving policy type: Applicable to a list of Tracking Area Identities (TAIs), to a list of cells or to 
a specific cell.  

• Energy saving policy targets: Target energy consumption (e.g., targeted RU energy consumption or 
energy consumption reduction).   

• Energy saving resources: Defines the wanted impact on a list of cells. Used to avoid (as far as possible) 
or forbid impacting the operation or the coverage of specific cells while doing energy saving.  
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Figure 2-10: Non-RT RIC - BeGREEN Energy Saving A1 Policy 

According to these fields, Energy Saving A1 policies can be enforced through the Near-RT RIC and the 
appropriate xApps. BeGREEN will follow this approach to define and implement the A1 policies related to 
the control of RUs, being compliant with the O-RAN specification. Additionally, the Energy Score (bits/J) will 
be also considered as a possible policy target. This way, xApps may consider energy efficiency as the 
optimisation objective instead of just energy consumption, increasing the options when designing xApps and 
their interactions with RAN functions.  

Also concerning the A1 interface and its associated policies, recently the O-RAN Alliance has started 
addressing the management of conflicts among policies at the non-RT and near-RT levels. Several strategies 
related to conflict detection and management are being studied, such as implementing static and dynamic 
policy prioritization, or allowing partial enforcement of policies. Following the static approach, BeGREEN 
proposes a new field to be added in the policy instances to specify its priority. Using this priority, the near-
RT will have a simple way to manage conflicts in the management of resources by xApps. More details on 
this and additional strategies can be found in Section 2.1.3.  

According to the aforementioned fields, Figure 2-10 depicts the structure of BeGREEN’s A1 policy for 
providing energy savings in the RUs.  

 Near-RT RIC  
As described in BeGREEN D4.1 [1] and introduced in section 2 of this document, the Near-RT RIC oversees 
and manages the xApps of the system to provide actions over the objectives of the network. The Near-RT 
RIC works in a timely fashion providing solutions in the range of milliseconds (ms). To achieve this, the Near-
RT RIC needs timely data from the RAN to be exposed to the xApps to support RAN control actions, while 
receiving A1 policies from the Non-RT RIC that guide the xApps in the actions needed to fulfil network 
objectives.  

To this end, the dRAX Near-RT RIC from Accelleran provides a Telemetry Collector, which is designed to 
efficiently manage and organize telemetry data from various segments of the O-RAN infrastructure. Central 
to this framework is the Telemetry Gateway (TGW), which ensures interoperability across different O-RAN 
interfaces, such as E2, O1, F1, or A1. The TGW translates and regenerates data from the Radio Unit (RU) and 
Distributed Unit (DU). This way, the framework supports both fully compliant O-RAN systems and those 
lacking complete integration. For non-compliant systems, it translates non-standard interfaces to align with 
the O-RAN ecosystem. It processes raw and abstracted data from the radio environment, feeding it to the 
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Near-RT RIC for decision-making and RAN control. The TGW collects data from sources like the Kafka bus and 
publishes output metrics for use by other xApps, ensuring consistency and independence from data sources. 

To validate and provide support to the BeGREEN proposal, two main xApps (described in sections 2.1.3.1 and 
2.1.3.2) will be extended and included in the system evaluation and integration with the Intelligence Plane. 
Additionally, procedures to manage and mitigate conflicts among xApps will be implemented and evaluated. 
Next sections provide a detailed description of these mechanisms.  

 Energy Saving xApp 
The Energy Saving xApp is an application developed to manage the energy consumption of various network 
cells. The energy-saving process relies heavily on telemetry. Telemetry involves gathering data through 3GPP 
supported metrics, typically sourced from the DU/RU or other equipment. However, not all required 
telemetry data are readily available. Therefore, an important aspect is the creation of a new metric: the 
energy saving percentage. This metric is defined as the ratio between the energy consumption during 
energy-saving periods versus that of non-saving periods. 

To support this telemetry requirement, the TGW is essential. As aforementioned, the TGW is developed to 
integrate metrics from non-3GPP interfaces, as well as non-O-RAN compliant metrics, into the telemetry 
framework. This integration is crucial for applications like energy saving and Quality of Service (QoS) 
management within the system. 

The Energy Saving xApp operates in two specific use cases: 

• Single Frequency Network: This use case focuses on coverage optimization in scenarios where all cells 
operate at the same frequency. For example, as depicted in Figure 2-11, if there are six cells in an 
area and one cell is shut down, the remaining five cells increase their power to cover the area 
previously served by the shutdown cell. This approach optimizes coverage by leveraging small cells 
within the system. 

  
Figure 2-11: Energy Saving xApp - Single Frequency Network Use Case 

• Multi-Frequency Network System: In this case, the network consists of two layers: a coverage layer 
with lower frequency cells, and a capacity layer with higher frequency cells. As depicted in Figure 
2-12, when a cell in the capacity layer is shut down, users are typically handed over or forwarded to 
the coverage layer cells. The coverage layer cells, operating at a lower frequency, provide broader 
coverage, ensuring continuous service despite the shutdown of capacity cells. This is a typical 
scenario for MNOs. 

 
Figure 2-12: Energy Saving xApp - Multi Frequency Network Use Case. 
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Table 2-2: ES xApp - Required RAN metrics for the ES xApp Algorithm Decision-Making 

Name 3GPP name Unit 

DL Total PRB Usage RRU.PrbTotDl #PRB 

Number of active UE per cell DRB.ActualActiveUe #UE 

Mean Transmission power of an NR Cell CARR.MeanTxPwr dBm 

The first step in the Energy Saving xApp process is detecting the operational network. This requires 
configuring a list of network cells and identifying whether each cell belongs to the coverage layer or the 
capacity layer. Additionally, it involves understanding the neighbourhood relationships between cells, which 
can be optionally sourced from the RAN metrics. A list of UEs in the network is also necessary; if not available, 
this information will also be retrieved from the RAN metrics. The energy-saving algorithm and decision-
making process rely on three specific metrics, which are described Table 2-2. 

Apart from the metric, the xApp needs to process actions to control the RAN. The following is the list of 
actions and capabilities needed to provide energy savings within the Energy Saving xApp.  

• Adjusting Transmission Power: When the Energy Saving xApp decides to conserve energy by turning 
off cells, it initiates a procedure to gradually reduce transmission power. This serves two purposes: 
1) Avoiding drastic impacts on the network, and 2) allowing UEs to move from one cell to another 
through A3 event handovers. 

• Cell Turn On and Off: When the Energy Saving xApp decides to shut down a cell, it waits until the 
transmission power is reduced to a minimum configurable threshold before initiating the shutdown. 
If UEs remain in a cell that is about to be powered down, the system triggers a handover to nearby 
cells—either capacity or coverage cells—depending on the received power values to ensure 
continuous service. Conversely, if a cell needs to be turned on to meet traffic demands, the xApp 
triggers the process to power up the specific cell. 

• Handover: Before a cell is powered down, the system ensures that all UEs are handed over to other 
cells. This can either be to neighbouring capacity cells or to coverage cells, depending on the signal 
strength received by the users. 

Regarding the xApp algorithm or control-loop, during normal network operation it measures the Physical 
Resource Blocks (PRBs), throughput and power usage. If a cell's PRB usage falls below a configurable 
threshold, the cell is marked for shutdown. The power is gradually reduced, prompting UEs to handover to 
other cells before the cell is shut down. If the throughput of other cells exceeds a certain threshold, this 
triggers the cell turn-off process. When the algorithm determines that a cell needs to be turned on, it is 
powered up and users can handover back to this cell, thereby increasing the network's capacity. 

An important feature of the Energy Saving xApp is its capability to use cell load predictions from other xApps 
to optimize network performance. The cell load prediction xApp collects traffic information and uses AI/ML 
algorithms to predict load usage. This enables the Energy Saving xApp to foresee which cells will need to be 
turned on or off in the future, providing more accurate and efficient network management. In the case of 
the BeGREEN project, as described in section 2.1, this prediction feature will be provided by the models 
hosted in the AI Engine, rather than internally in the xApps.  

The global interaction between different components in the Energy Saving xApp is crucial for its functionality. 
When information comes from the E2 node, it enters an E2 broker. This information is then passed to the 
dRAX databus, which connects to the TGW. The TGW interconnects information with different parts of the 
system, including the radio or a simulated radio like a RAN emulator or RIC Tester, as shown in Figure 2-13. 
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Figure 2-13: Energy Saving xApp - Global interactions for the Energy Saving xApp 

 
Figure 2-14: Energy Saving xApp - Accelleran’s dashboard to evaluate the performance of Energy Saving xApp 

The Energy Saving xApp includes an analysis dashboard to visualize the effects of decision-making on users. 
This dashboard provides insights into energy savings achieved and offers a comprehensive analysis of the 
network, summarizing the RAN matrices. As shown in Figure 2-14, in some scenarios the Energy Saving xApp 
is able to provide savings larger than 20%, maintaining a QoS above 90%.  

The extension of this xApp within the BeGREEN project will include the integration with the Intelligence Plane 
for traffic prediction and the conflict management capabilities. This will be reported in the next deliverables 
of WP4 and WP5.  

 Handover Manager xApp 
The Handover Manager xApp is designed to optimize the handover process in 3GPP systems, offering a 
proactive approach to managing network resources efficiently. Traditional handover algorithms, such as the 
A3 algorithm, are reactive and focus on per-device optimization. In contrast, the Smart Handover-xApp 
employs advanced algorithms like Mobility and Load Aware proActive haNDover Algorithm (MOLA-ADNA) to 
achieve global optimization [13], ensuring efficient load distribution and improved overall network 
performance. This adaptive and QoS aware handover algorithm takes multiple metrics into account to do 
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network level optimization of the cell load. The Handover Manager xApp is developed on the dRAX 
framework, where all communication happens through the dRAX databus, both for receiving messages and 
sending commands. The architecture of the Handover Manager (HM) xApp, shown in Figure 2-15, includes 
the following components: 

• Data Retriever: Retrieves messages from the dRAX databus, including Reference Signal Received 
Power (RSRP) and Reference Signal Received Quality (RSRQ) measurements of each UE to their 
respective serving and neighbouring cells, as well as the throughput of each UE. 

• Data Processor: Processes incoming messages and prepares information to be stored in the internal 
Data Store. 

• Data Store: Holds the current network overview, including each UE's serving cell, throughput, and a 
list of all neighbouring cells, along with their RSRP and RSRQ values and the history of each metric. 

• Handover Algorithms Database: Contains different handover algorithms, including a processor for 
calculating additional metrics and the logic for each algorithm. 

• Handover Execution Engine: Executes the handover algorithm processor, updates metrics in the Data 
Store, and executes the handover algorithm logic to generate a handover list. 

• Action Taker: Generates appropriate handover commands based on the handover list and sends 
these commands to the dRAX databus for execution. 

The Handover Manager xApp continuously monitors data from the RAN in the RIC, providing a global 
overview of the network that allows for proactive optimizations. Configuration options, such as selecting a 
handover algorithm, setting the periodic interval of handover execution, and the length of data history for 
metrics, can be adjusted in real-time. 

To facilitate smart handovers, the Handover Manager xApp collects and processes various metrics through 
data exposure to the dRAX data bus. Key metrics include: 

• RSRP and RSRQ per UE to the serving cell. 

• RSRP and RSRQ per UE to all neighbouring cells. 

• Downlink and uplink throughputs per UE. 

 

 
Figure 2-15: Handover Manager xApp - Internal Architecture 



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

33 

 
BeGREEN [SNS-JU-101097083] 

This information flows from the cells to the data bus and then to the xApp for analysis. Commands from the 
xApp back to the data bus and cells include automatically triggered handover commands, specifying the 
selected cell for each handover. 

As aforementioned, the Handover Manager xApp is capable of working with two particular algorithms: A3 
and MOLA-ADNA algorithms. The typical handover in 3GPP systems uses the A3 handover algorithm, a 
reactive approach. It triggers when the received power of UE crosses a certain threshold, with cell selection 
typically going to the one with the highest received power. The objective is per-device optimization, 
connecting to the neighbour cell with the highest signal indicator plus an offset over a period of time. 

The MOLA-ADNA handover algorithm used by the Handover Manager xApp is proactive, meaning it actively 
monitors the network via the RIC and initiates handovers before issues arise. It selects cells based on multiple 
metrics, including RSRP, RSRQ, UE throughput and cell load. The algorithm aims for global optimization, 
distributing the network load across all cells. Using regression based on RSRP and RSRQ, it predicts the 
direction of UE movements, optimizing traffic distribution. The process involves: (1) Collecting required 
metrics from the data bus, (2) estimating the direction of UE movement and cell load, and (3) implementing 
multi-criteria decision-making to generate a handover list. 

Several experiments were conducted to evaluate the proposed MOLA-ADNA handover algorithm, comparing 
it to the commonly used A3 handover algorithm [13]. Using dRAX with three small cells and three general-
purpose UEs in an industrial setup, the experiments monitored throughput and Block Error Rate (BLER) QoS 
parameters. The setup included 20 MHz Time Division Duplex (TDD) small cells operating on band 42 and 
Raspberry Pis with band 42 LTE modems as UEs. Two static UEs were attached to cell Production-1, while a 
mobile UE started at cell Warehouse and moved towards cells Production-1 and Production-2. Static UEs 
generated 50 Mbps each, and the mobile UE generated 20 Mbps. 

Key findings showed that MOLA-ADNA significantly improved UE throughput during movement, with the 
mobile UE's mean throughput increasing by 25% [13]. It also maintained static UEs' throughput more 
effectively and reduced the mean BLER by 65%, enhancing communication reliability. MOLA-ADNA’s 
proactive optimization triggered handovers before QoS parameters degraded, unlike the reactive A3 
algorithm as shown in Figure 2-16. Additionally, MOLA-ADNA demonstrated scalability, optimizing networks 
with up to 750 UEs within 1.2 seconds. Overall, the real-life experimentation highlighted the clear advantages 
of the MOLA-ADNA handover algorithm over the traditional A3 algorithm, emphasizing its proactive, multi-
metric approach to network optimization. The enhancements for the BeGREEN project will include the 
extensions towards Geo-localization based on external information, e.g. ISAC, and extensions to support 
conflict management. This will be reported in the next project deliverables. 

 
Figure 2-16: Handover Manager xApp - Preliminary MOLA-ADNA Smart Handover algorithm results. 
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 Conflict Mitigation 
Conflict mitigation involves managing situations where two applications or entities perform conflicting 
actions. In the context of O-RAN, conflicts occur when two actions conflict within RAN components. To 
manage these conflicts, policies should be considered first. Policies are rules used to control changes in the 
state of managed components, providing guidelines for network actions. However, these policies can 
sometimes create conflicting actions. Strategies to minimize the impact of these conflicts can be categorized 
into three main strategies: conflict detection, conflict resolution, and conflict avoidance. 

• Conflict detection involve pre and post actions to identify potential and actual conflicts, whether 
direct, indirect, or implicit. Indirect conflicts pose a challenge as the platform may detect potential 
conflicts but determining whether these conflicts are harmful is not straightforward. Blocking 
potential conflicts involving many use cases is not a viable solution. Detecting indirect or implicit 
conflicts, especially with more than two conflicting applications, is a highly complex task. 

• Conflict resolution, on the other hand, is typically a post-action process. Resolving ongoing conflicts 
is not trivial because different resolutions may harm the network or fail to meet the system's 
objectives. This resolution process requires careful consideration to ensure that the chosen 
resolution does not introduce new problems or exacerbate existing ones. 

• Conflict avoidance or guidance is a pre-action strategy aimed at detecting conflicts based on previous 
experiences. This approach uses mechanisms like E2 guidance to avoid future conflicts, leveraging 
the fact that xApps often exhibit repeated behaviour. By providing guidance and information to 
xApps, the network can prevent many conflicts before they occur. 

Regarding direct conflicts, the RIC may not always be able to decode E2SM level information. Extending E2-
related API to enable the platform to use xApps for E2SM-specific processing would offer one solution to 
address this issue. E2SM level processing can lead to delays between the E2-related API request and the 
E2AP RIC Control Request message to the E2 Node. Since xApps are likely to repeat the same or similar 
requests for the same E2 Node, repeating conflict mitigation processes at each occurrence is wasteful and 
time-consuming. A longer-term guidance solution giving xApps a priori permission would avoid this issue. On 
the other hand, indirect and implicit conflicts are generally only detectable as post-action, after 
corresponding E2AP transactions have been completed. The RIC may be able to observe E2 Node KPIs to 
detect the impact of indirect conflicts, leading to the need for platform-initiated requests, either directly to 
the E2 Node or to trigger xApps to initiate data collection. This can be done using E2SM-KPM and/or E2SM-
CCC. However, the analysis of collected data and messages may be difficult if the platform cannot decode 
E2SM level information. 

In the BeGREEN project, conflict mitigation spans several scopes, including SMO, Non-Real-Time RIC, which 
involves rApps, Near Real-Time RIC, involving xApps, and interfaces, including the A1 and E2 interfaces. In 
the following points the current work in the O-RAN Alliance regarding conflict mitigation is detailed and the 
BeGREEN approach is described.  

Current Status in O-RAN:  

In the current status of O-RAN, Work Group 2 (WG2) focuses on conflicts related to A1 policies, though this 
topic is still not being addressed in the current A1 specification. The main scenario is related to a set of A1 
policies to be requested at the Non-RT RIC, where their targets may not be predictably achievable due to the 
potential contradictory state of the RAN once these policies are enforced. Currently, three main conflict 
types are being studied: 1) Objective conflict, related to policy types with contradictory objectives (e.g. QoS 
and Energy Saving), 2) Resource conflict, which considers policies leading to inconsistent utilisation of RAN 
resources, and 3) Scope conflict, which is caused by contradictory policies targeting related scopes (e.g., Slice 
QoS vs UE QoS).  



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

35 

 
BeGREEN [SNS-JU-101097083] 

In the O-RAN Work Group 3 (WG3), conflict mitigation is considered in four different areas of the Near-RT 
RIC architecture specification [14]. The first area is conflict mitigation found in section 6.2.3 of the 
specification, which defines the role of the Near-RT RIC platform in conflict mitigation. Its functionality 
involves detecting and resolving potentially overlapping or conflicting requests from multiple xApps. Conflict 
mitigation also addresses interactions between different xApps, as their objectives may result in conflicting 
actions. However, the specifics are not fully defined, and further work in WG3 on conflict mitigation is 
ongoing. The second area is the A1 policy procedure, described in section 9.2.2 of [14], which outlines the 
procedures for setting up, updating, deleting, and querying policies. The third area is the definition of the 
policy management service, which is related to the A1 API procedures and is detailed in section 9.2.1.1 of 
[14]. And the fourth area is the E2 guidance API-related procedures, found in section 9.3.3, which defines 
the communication between xApps to avoid conflicts. It allows authorized xApps to obtain guidance from 
the Near-RT RIC platform's conflict mitigation functionality before initiating an action. The platform may 
signal conflicts or provide guidance to internal processes and other xApps.  

Consequently, regarding the conflict management in the RICs, two conflict scopes can be considered. The 
first one may happen in the context of A1 policy conflicts, that typically arise when two different policies 
affect the same RAN element (e.g., cell) with contradictory objectives (e.g. RAN resource reservation and 
release). Such conflicts are ideally resolved in the Non-RT RIC but can also be managed in the Near-RT RIC. 
The second conflict scope may occur when different xApps generate contradicting actions over the RAN 
elements. Such conflicts should be managed in the Near-RT RIC. For instance, if several control messages are 
related to UEs (e.g., related to handover, carrier aggregation or dual connectivity control), it is possible that 
only the first message to arrive at the E2 Node will succeed, which can lead to a latency-sensitive critical path 
issue (direct control conflict). This aspect is being addressed by WG3. The conflict mitigation function in the 
platform could observe E2-related API messages from xApps but may not detect potential indirect conflicts 
between the two requests, highlighting the complexity of indirect xApp conflicts.  

dRAX Near-RT RIC implementation: 

To support general conflict management in the RIC, several modifications are needed for the dRAX 
framework, as shown in Figure 2-17. The first modification is that the Non-RT RIC needs to define an A1 policy 
manager to send policies to the Near-RT RIC. The second modification involves extending the Near-RT RIC to 
support several entities, which can be divided into three specific areas: 

 
Figure 2-17: Conflict Mitigation - dRAX architecture to support conflict mitigation. 

• Subscription Manager: This interface will receive information from the A1 policies, handle the 
policies, and direct them to all the xApps in the system. The Subscription Manager is a subscription 
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interface that will be part of the SDK of the dRAX. It serves as the interface between the dRAX and 
the subscription manager entity in the Non-RT RIC. The Subscription Manager is responsible for 
translating and managing A1 policy messages, which will be derived from future release of the A1 
policy by the WG3 in O-RAN (Figure 2-18).  

• Conflict Manager Entity: This entity will manage all the conflict processes within the Near-RT RIC. It 
is divided into three important components: 1) the xApps Subscription Manager, the 2) Subscription 
Database, and 3) the Conflict Mitigation, Detection, Resolution, and Avoidance Entity.  

o The xApps Subscription Manager handles the subscription of xApps to assist in the conflict 
process. It is responsible for collecting and managing the subscription database, managing 
and inspecting the E2SM level information, and overseeing the onboarding, securing, 
authorizing, and conflict authorization of the xApps.  

o The Subscription Database plays a crucial role in conflict mitigation by maintaining 
information about RAN elements and their relationships with policies and actions. It serves 
as the front-facing API for the GUI dashboard, enabling conflict mitigation resolution through 
exclusive or priority-based techniques. This database, or matrix, helps identify potential 
conflicts by defining actions for each element based on the type of element and policy type. 
It also provides a trace of the status of each RAN element, allowing the control manager to 
monitor and manage conflicts effectively. 

o The Conflict Mitigation, Detection, Resolution, and Avoidance Entity (Figure 2-19) is tasked 
with detecting, resolving, and providing guidance to avoid conflicts between xApps. It 
handles policies from the A1 interface and distributes them among the xApps. Additionally, 
it defines mechanisms to manage conflicts, which could be exclusive, or priority based. 

• Conflict Avoidance Handler: The conflict avoidance handler is an entity that resides within each xApp 
to respond to policies and conflicts within the system. The xApp Conflict Manager is responsible for 
creating communication channels between all xApps to prevent conflicts. Each xApp needs a handler 
dedicated to specific conflict avoidance tasks. The dRAX Near-RT RIC will provide mechanisms for 
xApps to publish and receive alerts, particularly through the O1 VEST alert. It is up to the xApp 
developers to decide which types of alerts to publish and which to react to. This marks the first step 
towards collaborative conflict avoidance. Additionally, this mechanism can be used by rApps to 
manage A1 policy conflicts and distribute responsibilities via the O1 interface.  

 
Figure 2-18: Conflict Mitigation - dRAX Subscription Manager 

 
Figure 2-19: Conflict Mitigation - dRAX Conflict manager entity 
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Figure 2-20: Conflict Mitigation - dRAX conflict avoidance handler inside xApps 

Conflict Management collaborative solution:  

Figure 2-21 presents the general implementation of the collaborative solution for the RIC, describing the 
elements and entities involved in conflict management. In the upper part, the SMO holds the Non-RT RIC, 
where rApps work together. Below that, there is the dRAX Near-RT RIC and, at the bottom, the RAN elements 
are depicted. To support conflict mitigation several modifications to the infrastructure are made. First, the 
A1 policy management resides inside the Non-RT RIC. This component sends A1 policies to the Near-RT RIC. 
These policies are then distributed to all xApps and are listened to by the policy listener or A1 broker within 
each xApp. As each xApp performs its tasks, any action an xApp intends to initiate is sent through the conflict 
avoidance handler to the dRAX databus. The conflict avoidance handler detects if another xApp is likely to 
issue a conflicting action. In this collaborative approach, if two xApps attempt to use the same resource, they 
step back and resolve the conflict using information from the dRAX databus based on information from the 
policy. Finally, the xApp conflict management stage is used to detect potential conflicts throughout the 
system, ensuring proactive conflict detection and resolution. 

 
Figure 2-21: Conflict Mitigation - conflict management solution proposed by BeGREEN 
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Figure 2-22: Conflict Mitigation - message workflow for collaborative conflict mitigation 

The message workflow for the collaborative conflict mitigation is described in the Unified Modeling Language 
(UML) diagram depicted in Figure 2-21. The validation of this workflow considering scenarios involving 
conflicting xApps devoted to QoS and Energy Savings, will be reported in following deliverables.  

2.2 Integration with BeGREEN RAN domain 
This section details how the BeGREEN Intelligence Plane integrates with O-Cloud, O-gNB, RIS, ISAC and Relay 
technologies according to the control and monitoring needs of the proposed energy efficiency optimisations. 
Note that, as reported in BeGREEN D4.1 [1], in the BeGREEN project RIS, Relay and ISAC technologies are 
considered, which are currently beyond the scope of O-RAN. Therefore, in addition to O-RAN components, 
interfaces and procedures related to O-Cloud and O-gNB control and monitoring, whose utilisation within 
the context of energy saving uses cases was already introduced in [3], the Intelligence Plane requires of novel 
approaches to integrate these other technologies.  

 5G Base Station / O-gNB 
BeGREEN research in this area was distributed in several WPs. In WP3 the research was concentrated in a 
specific module that turns off the RU RF Power Amplifier (PA) when no data is transmitted in the Orthogonal 
Frequency-Division Multiple Access (OFDMA) downlink symbol (Power Amplifier Blanking Module). In WP4 
the research was focused on two AI based modules: a) The Digital Pre-Distortion (DPD), and b) the Envelope 
Tracking (ET) modules. For the convenience of the reader, both activities in WP3 and WP4 related to the BS 
Energy Consumption saving research have been reported in WP3 deliverables (e.g., BeGREEN D3.2 Section 
3.2 [15]).  
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These solutions do not require of a Non-RT RIC or Near-RT RIC control, since decisions are taken on a real-
time basis by the RU module. Nevertheless, BeGREEN WP4 is developing other strategies that will require of 
control-loops to optimise the energy efficiency of O-gNBs and will exploit O-RAN interfaces and components 
(e.g. Energy Saving xApp introduced in 2.1.3.1 and non-RT RU control described in Section 3.3). According to 
current O-RAN specifications, RU energy saving functionalities shall be managed by the DU component 
through the M-plane [16] including carrier deactivation, RF channel switch off/on, advanced sleep modes 
and deep-hibernate. Then, rApps may have access to these functionalities through the O1 interface [17], 
while xApps may use the Cell Configuration and Control (CCC) Service Model of the E2 interface (E2SM) [18]. 
Therefore, the proposed solutions in BeGREEN will leverage these interfaces.  

Given the ISAC latency and bandwidth requirements when processing the signals at the RU, to date O-RAN 
does not put much emphasis on its implementation and it is not part of O-RAN Alliance focus. Therefore, no 
SM has been standardised for gathering data directly from the PHY layer. If that were the case, i.e. that the 
I/Q samples available at the RU are to be processed, it is wise to consider that any pre-processing of the 
signals needs to happen at early stages to reduce the datarate towards the core network (CN). This pre-
processing could take place at the O-RUs, O-DUs or, in case of a centralized deployment, either at the O-CU 
or at the Near-RT RIC. These two last options could be the best solution when processing jointly data from 
different sources, i.e. different O-RUs. 

BeGREEN project will study the integration of ISAC developments in the project in a tighter manner than 
described in the Description of Work, seeking to provide sensing information to the O-RAN Intelligence Plane, 
subject to the features of the considered O-RUs. These contributions will be reported in the next project 
deliverables of WP2 (architectural concept), WP3 (ISAC development work) and WP4 (implications on the 
Intelligence Plane and RAN domain integration). 

 O-Cloud 
As introduced in [19], efficient CPU energy management is essential for optimizing the performance and 
sustainability of O-Cloud nodes in the O-RAN architecture. This section outlines the key aspects of CPU 
energy saving modes, data retrieval processes, and the roles of various components and interfaces within 
the O-RAN ecosystem. 

In the O-RAN O-Cloud architecture, depicted in Figure 2-23, telemetry and inventory management is handled 
by the O2 interface, which is responsible for retrieving data such as supported CPU energy saving modes, 
CPU utilization, current operational CPU power, frequency, and voltage from the O-Cloud nodes. Additionally, 
RAN data, including user traffic load and RAN configurations related to network functions (O-DU & O-CU), is 
sourced from the O1 interface. The O2 interface enables changes in network energy configurations, allowing 
for dynamic adjustments to optimize energy consumption based on real-time data. 

Several components are involved in this process. The Federated O-Cloud Orchestration and Management 
(FOCOM) manages the orchestration and lifecycle of O-Cloud resources, ensuring efficient allocation and 
operation. Infrastructure Management Services (IMSs) provide a logical interface for orchestrating the O-
Cloud lifecycle processes, including the management of network functions and other operational procedures. 
Deployment Management Services (DMS) manage the lifecycle of deployments that utilize cloud resources, 
ensuring smooth and efficient deployment and operation of network functions. 

The O2 interface is a crucial element in the O-RAN architecture, providing secure communication between 
the SMO and the O-Cloud. It facilitates the management of O-Cloud infrastructures and the deployment 
lifecycle of O-RAN cloudified network functions. Its extensible design allows for the addition of new 
information or functions without needing protocol or procedure changes, supporting a multi-vendor 
environment independent of specific implementations of the SMO and O-Cloud. 
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Figure 2-23: O-Cloud Energy Savings – Interfaces and operations [19] 

 
Figure 2-24: O-Cloud Energy Savings - Components and interfaces [20] 

O2 IMSs are tailored for the management and provisioning of O-Cloud resources available to the SMO 
through FOCOM over O2ims. This includes the allocation of available O-Cloud resources (e.g., compute 
resources and networks) into O-Cloud node clusters and all cluster-wide operations throughout their 
lifecycle. O2 DMSs are dynamically created over O2ims for NF deployment placement and management of 
O-Cloud node clusters. They prepare O-Cloud node clusters for the network functions being deployed, with 
exceptions for cluster-wide operations requested by SMO through FOCOM over O2 IMS. Figure 2-24 
summarizes the involved components and interfaces specified by O-RAN.  

The O1 interface connects all O-RAN managed elements (and the management entities within the SMO 
framework. It ensures the operation and management – e.g. Fault, Configuration, Accounting, Performance, 
Security (FCAPS), software management, file management) of O-RAN components. This interface manages 
various O-RAN components, including the Near-RT RIC, O-CU, and O-DU in 5G NR. The monitoring of the RAN 
is conducted through the O1 interface using performance monitoring jobs, which provide aggregated 
counters. The O1 monitoring also interfaces with the Non-RT RIC to facilitate comprehensive performance 
analysis and management. 

In summary, the integration of CPU energy saving modes within the O-RAN architecture involves a complex 
interplay of telemetry, inventory data retrieval, and dynamic network energy configuration changes. The O2 
and O1 interfaces play critical roles in managing O-Cloud resources and orchestrating the deployment and 
operation of network functions, ensuring efficient and sustainable network performance. 
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 RIS 
As introduced in BeGREEN D2.2 Section 4.3.2 [21], RIS will be both controlled by the Near-RT RIC for near-RT 
operations (such as RIS per-element configuration) and the Non-RT RIC (such as logical split of the RIS). To 
this end, the RIS-enabled BeGREEN architecture is updated as depicted in Figure 2-25. 

To integrate the RIS (i.e., the RIS Actuator) with the Near-RT RIC, an extension of the E2 interface is 
considered, denoted as E2+ in the BeGREEN architecture. To this end, two new SMs will be used:  

- E2 Service Model Smart Surface Control (E2SM-SSC): This SM would modify and initiate RIS control 
related call processes and messages, and it will execute commands that may result in change of RIS 
control behaviour in a near-RT time scale. Some of the procedures will be: 

o Load pre-calculated configuration from a codebook. This procedure requires to specify the 
following parameters:  

 conf_id: configuration identifier which normally will map to a specific azimuth angle 
Θ𝑖𝑖and elevation angle Φ𝑖𝑖. 

 codebook_id: codebook identifier. Several codebooks may be available at the RIS 
actuators. These will be normally similar to the ones presented in [22] and will 
translate transmitted angles ( Θ𝑡𝑡Φ𝑡𝑡 ) to reflected angles ( Θ𝑟𝑟Φ𝑟𝑟 ) given the 
configuration specified by (Θ𝑖𝑖Φ𝑖𝑖). 

 RIS_id: RIS identifier to select the target RIS. 

o Set phase-shift of a specific element on a RIS, requiring the following elements: 

 element_id: identifier of the element of the RIS that needs to be modified. 

 phase_shift: amount of phase shift to be set in the given antenna element. 

 RIS_id: RIS identifier to select the target RIS. 

o Load new codebook, with the parameters: 

 codebook_conf: codebook information that describes a particular RIS model 

 codebook_id: codebook identifier. 

o Delete existing codebook, containing the parameter: 

 codebook_id: codebook identifier. 

- E2 Service Model Smart Surface Monitoring (E2SM-SSM): This SM would monitor RIS state in a near-
RT time scale. Some of the procedures will be: 

o Get RIS configuration, which will retrieve the current configuration of a given RIS. It will 
require the parameter: 

 RIS_id: RIS identifier to select the target RIS. 

o Get loaded codebooks, which will retrieve the current codebooks available in each RIS 
actuator. No parameters are required. 

o Get phase-shift of a specific element, which will require the following parameters: 

 element_id: identifier of the element of the RIS from which the phase shift need be 
retrieved. 

 RIS_id: RIS identifier to select the target RIS. 

o Get energy consumption, which will obtain the energy consumed by the RIS in a given time 
interval. Thus, the parameter required will be: 

 time_lapse: time lapse to be used to calculate the energy consumed by the RIS 
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Figure 2-25: RIS - Updated RIS-enabled BeGREEN architecture 

These procedures will leverage the E2 services defined by O-RAN (i.e., REPORT, INSERT, CONTROL, POLICY 
and QUERY) and other E2 support services. However, given that the RIS is not an E2 node, E2SM-SSC and 
E2SM-SSM SMs will not have some of the E2SM common IEs that other SMs have [23]. For example, IEs 
related to Cell Global ID will not be used, since a RIS device may not be attached to one single cell, but rather 
provide service to different cells simultaneously. Similarly, IEs related to Group ID, Core CP, QoS ID, Network 
Interface Type, Network Interface Identifier, Network Interface Message ID, Radio Resource Control (RRC) 
Message ID, Serving Cell Physical layer Cell Identifier (PCI), Serving Cell Absolute Radio Frequency Channel 
Number (ARFCN), Cell Radio Network Temporary Identifier (RNTI) and Partial UE ID will need to be updated 
or will not be used. For this reason, we refer to these two implemented SMs as the E2+ interface, which need 
to be supported both in the RIS Actuator and in the Near-RT RIC (see RIS Functions module in the Near-RT 
RIC). More details on the exact E2 mapping will be provided in later deliverables. 

To integrate the RIS Actuator with the Non-RT RIC, the O1 interface will be used [24]. The O1 interface is 
based on the NETCONF protocol and uses YANG to model the configuration and data collection commands 
required for the interactions. We foresee that, among the main tasks to be performed by the Non-RT RIC, 
are the RIS logical split management and codebook optimization/training, since these are tasks be done on 
a non-RT time scale. This is mainly because they are usually dependant on barely dynamic aspects such as 
the physical location, the number of incumbent operators or the types of QoS classes. The codebook 
optimization can be done through the standard policy-based A1 interface, which is specifically designed to 
send optimized configurations from the Non-RT RIC to the Near-RT RIC. However, the logical split is a 
management task that is intended to be performed through the O1 interface.  
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To implement a RIS-enabled O1 interface, termed as O1+ in the BeGREEN architecture, both the RIS Actuator 
and the O1 Functions module need to implement a simplified RIS YANG model that defines the RIS logical 
split rationale (i.e., mapping between RIS_id’s and elements_id’s) and support standard NETCONF operations 
such as get, get-config, edit-config, lock, unlock, close-session, kill-session, etc. Again, further details of O1 
RIS-enabled configurations will be provided in future deliverables. 

 Relays 
The development of AI/ML-based functionalities for relay control leads to the improvement of decisions of 
relay deployment, relay activation/deactivation, etc., resulting in a better system performance and an energy 
consumption reduction. As introduced in BeGREEN D2.2 [21] and D4.1 [1] these relay functionalities cover 
different aspects.  

First, BeGREEN considers the identification of periods of time and geographical regions with high traffic 
demands and poor propagation conditions (i.e. coverage holes). Another relevant relay functionality is the 
identification of the most adequate location for the placement of new relays and their initial configuration 
parameters. Moreover, the identification of UEs that can be good candidate RUEs (i.e. UEs with relaying 
capabilities that may serve neighbour users with poor propagation conditions with respect to the gNB [5]) is 
also considered. Finally, BeGREEN considers the dynamic activation/deactivation of these relays/RUEs. 
According to this, relays/RUEs are activated when needed to serve other UEs located in the coverage hole 
regions and are deactivated when they are not necessary, with the aim to minimize the energy consumption.  

Next subsections detail the integration within the BeGREEN architecture of the main functions needed to 
control the relays and to collect the required network measurements.  

 Main functions involved in the relay control 
For the implementation of the relay control functionalities, several components are necessary in the 
BeGREEN architecture. As shown in Figure 2-26, a Relay Control entity is placed at the SMO. This entity is in 
charge of the interaction with the relays for the collection of the network measurements and of the relay 
reconfigurations through an extended O1 interface., This interface is denoted as O1+ in the BeGREEN 
architecture, since as in the RIS case, BeGREEN will require of new YANG models to represent the relay 
configuration and functions. In turn, as shown in Figure 2-26, gNB measurements are sent to the SMO 
through the O1 interface. 

The considered relay control functionalities are sustained by different rApps placed in the Non-RT RIC. In 
particular, the data collection rApp manages the different processes related to the collection of 
measurements. Moreover, the Relay Function Management (RFM) rApp, is in charge of the coordination and 
management of all the functionalities related to the control of the relays. This RFM rApp decides when and 
where each of these relay control functionalities is executed. These functionalities are sustained by means 
of AI/ML models hosted in the AI Engine (i.e., as shown in Figure 2-26, CHD, Fixed Relay Placement, Candidate 
RUE Identification and Relay Activation). These AI/ML models make use of collected information stored in 
the AI Engine datalakes. Additionally, as introduced in section 2.1, the BeGREEN project introduces the 
concept of AIA rApps. These specific rApps cover different aspects such as model inference exposure, data 
pre-processing, performance monitoring of the AI/ML models and determining the necessity of model 
updates or model retraining. The proposed solution considers a different AIA rApp for each of the proposed 
relay-related AI/ML models. A brief description of these processes and functionalities is presented in the 
following paragraphs, while the different workflows and algorithms are detailed in section 3.4. 



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

44 

 
BeGREEN [SNS-JU-101097083] 

 
Figure 2-26: Relay Control - Main functionalities involved 

On the one hand, the relay control at the SMO and several rApps in the Non-RT RIC are involved in the 
processes of network monitoring and measurement collection (see details of these processes in section 
2.2.4.2). On the other hand, the RFM rApp in the Non-RT RIC triggers the different relay control 
functionalities. Concerning the CHD process, it makes use of a set of collected measurements with the aim 
to identify geographical regions with large traffic demands and poor coverage. For this purpose, a clustering 
process is executed in the AI Engine. The result of this process is a characterization of the coverage holes 
identified in each cell. This characterization is stored in the Coverage Hole Database as shown in Figure 2-26. 
More details of the CHD process can be found in section 3.4.1. After the identification of a coverage hole, 
the RFM rApp will decide the most adequate solution to address the problems in the detected coverage hole.  

One possible solution is the use of RUEs; for this purpose, the RFM rApp may trigger the process of Candidate 
RUE Identification. In general, UEs with good propagation conditions with its associated BS, a static/semi-
static mobility pattern, a periodical and predictable space-time location and large session durations, may be 
good candidates to become RUE. The list and characterization of candidate RUEs for each coverage hole is 
stored in the Relay Database (see Figure 2-26).  

Another possible solution to address a specific coverage hole is the placement of a fixed relay. In this case, 
the RFM rApp may trigger the Fixed Relay Placement functionality to determine an adequate geographical 
location to place a new relay and its initial configuration parameters. In case a new fixed relay is deployed, 
the configuration parameters of this new relay are stored in the Relay Database.  

With the aim of improving the system performance at the coverage holes and reduce the overall energy 
consumption, both fixed relays and RUEs are dynamically activated/deactivated depending on the number 
of users in their surroundings. To do this, the Relay Activation/Deactivation process makes use of recently 
collected measurements and information related to the relays status, available at the Relay Database. This 
information is used as input for the Relay Activation/Deactivation process that makes use of a trained model 
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to take adequate relay activation/deactivation decisions (see details in section 3.4.4). 

 Collection of network measurements 
Figure 2-27 presents the process of the collection of network measurements. As shown in step 1, a 
continuous network monitoring process is run at each gNB to identify cells that require the activation of 
some of the proposed relay control functionalities. By means of performance counters, each gNB keeps track 
of metrics such as the number of attempted calls, number of successful connections, number of call 
droppings, etc. Relevant metrics for the identification of cells with bad performance are described in [25][26]. 

The metrics used for this purpose in the proposed approach are described in [25] as follows:  

1. Number of DRBs successfully setup (DRB.EstabSucc.5QI): This measurement provides the number of 
Data Radio Bearers (DRBs) successfully established in a specific cell. Each DRB that was successfully 
setup to the UE increments the corresponding sub-counter by 1 per mapped 5G QoS Identifier (5QI).  

2. Number of released active DRBs (DRB.RelActNbr.5QI): This measurement provides the number of 
abnormally released DRBs that were active at the time of release. DRBs with bursty flow are seen as 
being active if there is user data in the Packet Data Convergence Protocol (PDCP) queue in any of the 
directions or if any DRB data on a Data Radio Bearer has been transferred during the last 100 ms. 
DRBs with continuous flow are seen as active DRBs in the context of this measurement, as long as 
the UE is in RRC connected state. The measurement is split into sub-counters per mapped 5QI. 

According to the previous metrics, the proposed approach considers the drop call rate as a metric to decide 
the activation of some of the relay control functionalities for a specific gNB. The drop call rate can be 
measured as the number of call droppings divided by the number of attempted calls in a specific gNB during 
certain period of time Tdrop_eval, according to: 

𝐷𝐷𝐷𝐷𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ 𝐷𝐷𝐷𝐷𝐷𝐷.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.5𝑄𝑄𝑄𝑄_𝑥𝑥𝑥𝑥
∑ 𝐷𝐷𝐷𝐷𝐷𝐷.𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.5𝑄𝑄𝑄𝑄_𝑥𝑥𝑥𝑥

, 

where x represents each of the 5QI level identifier. With a periodicity Tdrop_eval, the drop call rate is computed 
in all the gNBs in the network. Alternatively, cell droppings can also be measured by means of the 
retainability that computes the number of DRBs abnormally released divided by the aggregated DRB active 
session time for each mapped 5QI [26]. 

In the case that a drop call rate is higher than certain a given threshold in a particular gNB, the Relay control 
at the SMO activates a process to collect more specific measurements in the coverage region of this gNB to 
carry out a deeper analysis of the source of the identified problems (step 2-3). For this purpose, an accurate 
coverage and space/time traffic characterisation is essential to take adequate decisions of relay placement, 
relay activation/deactivation, etc. For this reason, the collected measurements that provide this space/time 
characterisation need to be associated with the timestamp and UE geo-location information where the 
measurement was taken. According to this, the proposed approach is based on the Minimization of Drive 
Tests (MDTs) feature [27]. MDT reports consist of periodical UE measurements including the measurement 
location (i.e. latitude, longitude, altitude), RSRP, RSRQ, and Signal to Interference and Noise Ratio (SINR) 
values of the serving and neighbour BSs. It also contains information of the Channel Quality Indicator (CQI). 

As shown in step 4 in Figure 2-27, the relay control at the SMO sends a command to activate and configure 
the process of collection of MDT measurements for the gNBs with a drop call rate higher than the established 
threshold. Then, when a UE with MDT capabilities and MDT consent establishes a RRC connection with one 
of these gNBs, the network sends a measurement configuration message to the UE with the configuration 
parameters of the MDT. This configuration message contains information about how the measurement 
collection and logging is triggered, information about the list of measurements to be collected, and the MDT 
deactivation condition. In the proposed approach, UEs are configured to collect and send MDT 
measurements with a periodicity TMDT_periodicity.  
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Figure 2-27: Relay Control - Workflow of the collection of network measurements. 

Coverage holes can be identified by observing a low value of RSRP of the serving and neighbour cells, 
together with the geo-location coordinates – obtained via Global Navigation Satellite System (GNSS) or by 
means of RF fingerprint – and a relative time stamp. Geo-located measurements collected from UEs in 
RRC_connected state are transmitted periodically to the network (with periodicity TMDT_periodicity). In turn, UEs 
in RRC_idle or RRC_inactive state can log measurements and transmit them later when the UE enters in 
RRC_connected state. The measurements collection and logging is done until the UE leaves the current cell. 
Collected MDT measurements are stored in an MDT database (step 5). After certain established period of 
MDT measurements collection TMDT_collection_period, the MDT process is deactivated in the corresponding cell. 
Finally, the collected MDT measurements are filtered and processed by a data collection assist rApp (step 6) 
and stored in the measurements datalake in the AI Engine (see step 7-8 in Figure 2-27).  

2.3 Integration with BeGREEN Edge domain 
As was introduced in Section 2.2.2, the management of resources in the O-Cloud is a responsibility of the 
FOCOM component, located in the SMO, and the IMS, located in the O-Cloud [20]. Both components are 
connected through the O2-IMS interface, which basically exposes IMS services to the FOCOM component, 
concretely: inventory, monitoring, provisioning, software management and Life Cycle Management (LCM).  

According to the different possible O-RAN deployment scenarios [28], and due to O-RAN disaggregated and 
virtualized features, the edge domain can be considered to contain components of the O-Cloud or of the 
Near-RT RIC. While the BeGREEN approach to manage O-Cloud or vRAN energy savings was already 
introduced in section 2.2.2, the interested reader can also refer to BeGREEN D3.2 [15] for a detailed 
description of hardware acceleration approaches to enhance the energy efficiency of O-Cloud and Near-RT 
RIC components. This section addresses scenarios where edge resources are allocated to the UPF of the 5G 
Core (5GC) and/or to AI-driven applications.  

The management of resources in the O-Cloud infrastructure includes two kinds of resources: physical and 
logical. In the case of the Edge domain, as will be further described in Sections 3.5 and 3.6, BeGREEN aims at 
intelligently managing physical resources, respectively CPUs and GPUs, to enhance the energy efficiency of 
UPFs and services. To this end, as was depicted in the main architecture (Figure 2-1), BeGREEN incorporates 
the following components to extend the baseline O-RAN architecture: 
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• Edge Control Function: Placed in the SMO, it should implement similar functionalities as the FOCOM 
component but focused on the resources allocated to non-RAN functions and services.   

• Edge Resource Controller: Placed in the Edge, and similarly to IMS, it should expose methods to allow 
the monitoring and management of edge resources.  

• O2+: Interface used to expose Edge Resource Controller capabilities to the Edge Control Function in 
the SMO. Its design should follow similar principles as O2-IMS.  

Note that due to the expected low TRL of the BeGREEN solutions, making use of these components (TRL 2 or 
3), it is not expected a detailed definition and specification of them within the scope of the project. 
Nevertheless, follows a list of the main requirements according to the use cases presented in BeGREEN D4.1 
[1] and extended in this deliverable (Sections 3.5 and 3.6): 

• Inventory and policies: The Edge Resource Controller shall expose methods to obtain the 
characteristics of the server, such as the pool of available resources (e.g. number and type of CPUs, 
number and type of GPUs, etc.) or the available energy saving policies (e.g., performance or energy 
saving mode, available P-states or C-states, etc.).  

• Monitoring: The Edge Resource Controller shall expose status, metrics and alarms, related to the 
utilization and availability of resources (e.g., the CPU or GPU load, power and energy consumption, 
etc.) allowing consumers (i.e., the Edge Control Function) to subscribe to them through the O2+ 
interface. Combined with performance metrics of the hosted functions, for instance the data volume 
being processed by the CPU, energy related metrics may be used to compute the Energy Score and 
Rating of the servers.  

• Dynamic management: Functions or policies shall be exposed throughout the O2+ interface to allow 
dynamic management of resources, like controlling the allocation of CPU or GPU resources to 
specific processes, or their configuration. Non-RT control shall be the minimum time granularity, 
although near-RT control could be useful in some use cases (e.g., managing C-states). 

Other works from the state-of-the-art have proposed similar approaches to incorporate the management of 
resources not dedicated to RAN. For instance, the project Smart-5G from the Open Networking Foundation 
(ONF) [29] also targets energy optimisations at the RAN and CN domains. In the ONF approach, the control 
of CN resources is decoupled from the SMO and implemented in a different external component, which just 
makes use of the RAN telemetry exposed by the SMO.  

The unified approach proposed by BeGREEN can enhance the overall energy efficiency by enabling more 
holistic optimization strategies. By integrating RAN and non-RAN resource management within the same 
rApps, BeGREEN leverages the synergy between different network components, potentially leading to better 
resource allocation and utilization. Indeed, the required functions could be easily integrated into a more 
general O-Cloud approach, extending the FOCOM, IMS and O2 components to manage the allocation of 
resources to RAN, Core and services. This would not only enhance the performance and sustainability of the 
network but also ensure that the allocation of resources matches with the dynamic needs of both RAN, CN 
and service domains, leading to a more efficient and adaptable network infrastructure. This approach is 
aligned with research proposals that aim to converge in the same hardware platform the workloads of 5G 
RAN, Core, AI/ML and services [30]. 
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 Initial Evaluation of AI/ML-Assisted Procedures to Enhance Energy 
Efficiency 

This chapter details the BeGREEN AI/ML-assisted procedures to enhance energy efficiency in the RAN and 
Edge domains, along with the evaluations performed. First, we extend the description of the methods 
reported in BeGREEN D4.1 [1], focusing on the final use cases and the design of the solutions that are being 
considered within BeGREEN scope. Secondly, for each of the methods we provide validations of the 
algorithms, workflows and/or design principles. Given the varying maturity levels of these solutions, the 
scope of the evaluations is heterogeneous and, in some cases, a final evaluation of a specific method or 
algorithm is presented, while in others only initial insights or validations are provided. 

Section 3.1 deals with the application of dimensionality reduction on ML models to achieve energy efficiency 
in the ML services without sacrificing accuracy. The proposed approach is validated with data from real 
dataset from an MNO. Section 3.2 addresses the problem of compute resource allocation in vRANs, which is 
also being considered by O-RAN Alliance [3], as presented in Section 2.2.2. A solution based on RL is applied 
and validated experimentally, which aims to optimize the allocation of shared compute resources to virtual 
BS. Section 3.3 deals with another use case being prioritized by O-RAN [3][31]: 5G carrier/cell on/off 
switching. In BeGREEN we consider a realistic NSA scenario based on a real MNO dataset, and we evaluate 
strategies performing AI/ML-driven offloading from 5G to 4G Radio Access Technologies (RATs).  

Section 3.4 provides a detailed description of the workflows and algorithms required to implement the 
different methods introduced in section 2.2.4, targeting energy efficient relay-enhanced RAN control. An 
initial validation of each of the methods is also presented, based on simulative work modelled according to 
real measurement campaigns. Section 3.5 deals also with the energy efficient allocation of compute 
resources but applied to edge servers hosting the UPF of the 5GC. An experimental characterization of the 
energy consumption of a Vector Packet Processor (VPP) and Data Plane Development Kit (DPDK) based UPF 
implementation is presented, introducing mechanisms to match traffic demands, compute resources and 
energy consumption. Also considering the Edge domain, Section 3.6 addresses the problem of the joint 
orchestration of vRANs and Edge AI services. According to the experimental characterization of the 
problematic, an AI/ML solution based on a Bayesian online learning algorithm is detailed. Section 3.7 
presents the initial validation of the Intelligence Plane implementation, focused on the integration of the AI 
Engine and the non-RT RIC, which is built on the demonstration performed at the 2024 EuCNC & 6G Summit.  

Finally, Section 3.8 provides a summary of the use cases and the AI/ML methods presented in this chapter, 
highlighting the main features and the initial results that have been obtained. Note that this deliverable does 
not include an evaluation of the RIS integration into O-RAN, described in section 2.2.3. BeGREEN D4.3 will 
provide details about the results on such integration. 

3.1 Dimensionality reduction 
Traffic volumes in radio networks have increased exponentially over the last decade. Therefore, although 
the efficiency of these networks has improved, the continued rise in traffic makes minimizing energy 
consumption a critical challenge in the telecommunications industry. To ensure maximum energy efficiency 
it is necessary that the configuration of each element in the network is optimal at all times. In this section 
dimensionality reduction of input data is considered, which is a technique for reducing the amount of data 
that need to be processed to detect entities in the network that are operating with low energy efficiency and 
may need reconfiguration. 

 Solution design and use case 
An example of the utility of dimensionality reduction is a demonstration of how predictive models can 
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maintain high levels of accuracy when trained with datasets with reduced dimensions. Telecommunication 
networks typically collect thousands of types of performance data, which represent the operating conditions 
of the network. Based on these data, a predictive model that predicts, for instance, the energy consumption 
of a cell in a telecommunication network, can generate accurate predictions.  

A comparison between the relative accuracy of predictions made with the complete dataset and predictions 
made with feature-reduced datasets can be carried out. Accuracy is calculated using the R2 coefficient of 
determination that measures the model prediction accuracy. The features that are removed from the model 
in the feature-reduced datasets are those features where the ‘feature importance’ to the model is lowest. 
Feature importance refers to techniques that calculate a score for all the input features for a given model. A 
higher ‘feature importance’ indicates that a feature has a larger impact on the model that is being used to 
predict a certain variable. Then, an evaluation of the relative processing and data movement/storage costs 
involved in training the model can be used to find the optimum balance between predictive accuracy and 
costs of making the prediction. The general workflow for applying dimensionality reduction to a predictive 
model is shown Figure 3-1.  

 
Figure 3-1: Dimensionality reduction – workflow 
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The decision on increasing or decreasing the number of features is based on the prior setting of an acceptable 
accuracy limit (Ta) for the current predictive task, an initial reduction factor (Fr) and the number of iterations 
(Ni) of the workflow that should be performed. The setting of Ta will determine the minimum accuracy level 
of the dimensionally reduced model that is defined by the workflow. Fr affects the step size with which 
iterations of the workflow will approach the ideal balance between accuracy and energy efficiency in terms 
of lower number of features. Ni influences how closely the final result of the workflow will match this ideal 
balance. Based on experimental results, an Fr of 0.5 (corresponding to halving the dataset with each iteration) 
and Ta = 10 iterations of the workflow offers a good trade-off. 

The method is generally applicable to predictive models for any metric. In BeGREEN it has been 
demonstrated with XGBoost models predicting the energy consumption of a cell, as will be presented in the 
next subsection. 

 Initial evaluation 
The results of this comparison are shown in Table 3-1. The first column shows the number of features used 
in the predictive model and the second the percentage from the total number. The third column shows the 
R2 accuracy score of the model, relative to the accuracy of the model using all the features (first row). The 
third column shows the number of CPU cycles needed to train the model, relative to the value using all the 
features (first row).  

The following diagrams show the relationship between the number of features used to generate a prediction 
and its accuracy measured by its R2 score (Figure 3-2) and the number of CPU cycles used to train the model 
that generates that prediction (Figure 3-3). 

Table 3-1: Dimensionality Reduction - Example 

Number of 
Features 

% of Features % Max Accuracy % Max CPU Cycles 

1100 100% 100.0% 100% 

50 5% 99.3% 19% 

30 3% 98.8% 17% 

20 2% 98.4% 18% 

10 1% 95.0% 15% 

 

 
Figure 3-2: Dimensionality reduction example - number of features vs accuracy 
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Figure 3-3: Dimensionality reduction example – number of features vs CPU cycles 

The ‘elbow’ on each graph is visible at 50 features. The loss of predictive accuracy when using 50 features is 
0.7% but the prediction can be generated using less than 5% of the data volume and less than 20% of the 
CPU cycles. This means that a large proportion of the energy expended in training models, in addition to the 
data movement, processing and storage costs associated with this process, can be saved for subsequent 
model retraining tasks by applying dimensionality reduction to the feature set used to retrain the models. 

In addition to the measuring the decrease in CPU usage that can be achieved with this technique it is also 
planned to create a method whereby it is possible to estimate the energy consumption of the models, 
dependent on details of the system on which they are executing. It would then be possible to quantify the 
energy savings of retraining a model using a dimensionally reduced dataset. 

3.2 Compute resource allocation in vRAN 
In this section, the problem of compute resource allocation in virtualized RAN under shared computing 
infrastructure is addressed. This problem has already been introduced in the previous BeGREEN D4.1 [1], 
where the state-of-the-art is discussed and an initial experimental characterization of the problem and an 
initial problem formulation are provided. The analysis is built on top of this formulation to design an AI/ML 
solution that relies on RL theory. Then, an experimental evaluation of the proposed algorithm analysing the 
convergence, the inference time needed to have a practical solution, and its performance with respect to 
state-of-the-art benchmarks using realistic traffic traces are provided.  

The problem addressed in this deliverable is of paramount importance in mobile networks. Unlike other 
setups, the amount of processing power a vRAN system needs can fluctuate significantly. This dynamism 
stems from several factors. First, each vBS instance has varying CPU demands depending on the amount of 
data flowing in both directions (uplink and downlink), the signal quality between the user and the station, 
and the data transmission method employed. On top of that, efficiently allocating resources becomes even 
more challenging when multiple vBS instances share the same platform. Here, a delicate balance needs to 
be struck. Allocating too much computing power (over-provisioning) leads to wasted energy on idle cores, 
while allocating too little (under-provisioning) can cause performance issues. This resource crunch can lead 
to problems like data synchronization failures, increased radio errors, and frustrating delays for users. 

An ideal scenario would involve dedicating specific processing power to each vBS instance for optimal 
performance. However, this approach comes at the cost of keeping more cores active, which translates to 
higher energy consumption. 

The solution proposed in this deliverable seeks a middle ground. By dynamically adjusting the number of 
active cores in a shared pool based on real-time traffic demands, the system can achieve a balance between 



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

52 

 
BeGREEN [SNS-JU-101097083] 

performance and energy efficiency. This approach factors in the impact of sharing resources on the overall 
health of the network, ensuring that cost-saving measures do not come at the expense of user experience. 

For the future BeGREEN D4.3, the plan is to address this problem from a different angle. Instead of having a 
solution that predicts the required computational resources considering interference among processes 
(noisy neighbour problem), it is planned to propose a resource allocation algorithm to optimize the resource 
utilization and therefore the energy efficiency of the system.  

 Solution design and use case 
Following the BeGREEN D4.1 [1], in this section the problem formulation, the system model and the 
considered optimization framework are presented. Specifically, the optimization framework relies on RL, in 
particular Deep Q-Network (DQN) algorithm[32], enhanced with Relation Networks (RNs) [33] to handle the 
variability of the input size. Given the characteristics of the objective problem, the RL framework is 
particularized with discount factor 𝛾𝛾 = 0 and episode length 𝑇𝑇 = 0 to a contextual bandit problem. The 
design for the learning agent's context (states), actions, and reward function are presented here. 

Context:  

In line with the related literature [34][35][36], we use the next metrics to describe the state: 

• Chanel quality: We use the mean UL Signal to Noise Ratio (SNR) observed by each vBS in the last 
interval, which allows our agent to infer their UL wireless capacity, and the mean DL CQI to do the 
same for the DL.  

• Network demand: The network demand of a vBS is the amount of UE buffered data for both UL and 
DL during the last decision interval. 

We represent DL and UL channel quality for a vBS instance 𝑖𝑖  observed in interval 𝑡𝑡  as 𝜎𝜎𝐷𝐷𝐷𝐷,𝑖𝑖
(𝑡𝑡)  and 𝜎𝜎𝑈𝑈𝑈𝑈,𝑖𝑖

(𝑡𝑡) . 

Furthermore, we let 𝑑𝑑𝐷𝐷𝐷𝐷,𝑖𝑖
(𝑡𝑡)  and 𝑑𝑑𝑈𝑈𝑈𝑈,𝑖𝑖

(𝑡𝑡)  denote its DL and UL network demand, respectively. We also assume a 

known mapping between channel quality and MCS: 𝑔𝑔𝐷𝐷𝐷𝐷⬚ (𝜎𝜎𝐷𝐷𝐷𝐷,𝑖𝑖
(𝑡𝑡) ) for DL, 𝑔𝑔𝑈𝑈𝑈𝑈⬚ (𝜎𝜎𝑈𝑈𝑈𝑈,𝑖𝑖

(𝑡𝑡) ) for UL, which is a mild 
assumption. Because the channel quality bounds the highest MCS, we can estimate the mean number of 
radio Resource Blocks (RBs) that each vBS can use in both directions given a mean MCS and network demand. 
This can be estimated using the 3GPP specifications [37]. In this way, we can state the demand for radio 
resources (in terms of RBs) rather than relying only on the past utilization of RBs, which may differ. 
Consequently, we denote the number of RBs used for DL and UL for vBS 𝑖𝑖 as 𝑝𝑝𝑖𝑖𝐷𝐷𝐷𝐷 and 𝑝𝑝𝑖𝑖𝑈𝑈𝑈𝑈, respectively. Using 
the number of RBs and network demand, we define the context of vBS 𝑖𝑖 as: 

𝑥𝑥𝑖𝑖
(𝑡𝑡) ∶= �𝑝𝑝𝐷𝐷𝐷𝐷,𝑖𝑖

(𝑡𝑡) ,𝑑𝑑𝐷𝐷𝐷𝐷,𝑖𝑖
(𝑡𝑡) ,𝑝𝑝𝑈𝑈𝑈𝑈,𝑖𝑖

(𝑡𝑡) ,𝑑𝑑𝑈𝑈𝑈𝑈,𝑖𝑖
(𝑡𝑡) � 

The design of 𝑥𝑥𝑖𝑖
(𝑡𝑡) is motivated by the convenience of expressive features and minimal dimensionality and 

follows the state-of-the-art [34][35][36]. The challenge now is to encode the context information 𝑥𝑥𝑖𝑖
(𝑡𝑡) for all 

vBS instances 𝑖𝑖  in a state vector 𝑠𝑠  with fixed dimensionality 𝐷𝐷 , which is required by the DQN model, in 
scenarios with a variable number of vBS instances over time. As shown in Figure 3-4, we address this with a 
RN [32][33]. 
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Figure 3-4: Resource allocation in vRAN - proposed ML architecture. 

Relation Network (RN): 

As the number of vBSs that our solution has to allocate CPU resources for in a particular time interval might 
be different than in past intervals, the context length changes depending on the number of vBS instances. 
Rather than building other agents for each of the different numbers of vBS cases or padding the various 
possible contexts to match a fixed context length, we opted to solve the problem using a RN. A RN can encode 
the relationship between the context associated to all vBS instances into a fixed-length state vector 𝑠𝑠. As 
shown in the literature, RN achieve higher performance and require less computational burden compared 
to other architectures like multi-layered perceptron (MLPs) [33]. 

To this end, the RN operates along all possible pairs of objects (context of vBS instances) to capture such 
hidden relations with a multi-layer perceptron model. Assuming a maximum number of vBS instances 
supported in the system equal to 𝑀𝑀, then we have the following possible pairs of context vectors: 

𝒳𝒳 ∶=   {(𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥1, 𝑥𝑥3), … (𝑥𝑥𝑀𝑀−1, 𝑥𝑥𝑀𝑀)}  

Since the maximum amount of vBS instances at any given moment is bounded, then |𝒳𝒳| is also bounded and 
fixed over time. The RN ingests sequentially each pair �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� ∈ 𝒳𝒳  of possible unpermuted context 
combinations and generates an output vector 𝑧𝑧𝑖𝑖,𝑗𝑗  with cardinality 𝐷𝐷. Once all �𝑁𝑁2� permutation vectors 𝑧𝑧𝑖𝑖,𝑗𝑗  
are computed by the RN, which is done sequentially, we create an encoded state vector 𝑠𝑠 by aggregating all 
output vectors, i.e., 𝑠𝑠 =  ∑ 𝑧𝑧𝑖𝑖,𝑗𝑗𝑖𝑖,𝑗𝑗 .  

In this way, we force order permutation invariance, which is a critical requirement of our problem, i.e., as 
the RN learns about different latent relations across vBS instances (objects), these learned relations remain 
invariant regardless the order of the input pair relations. Importantly, our RN not only helps to support 
variable number of vBS instances over time, but it also provides the DQN model with state information that 
represents better the relations between them, which is very helpful to capture the impact of the noisy 
neighbours problem in a state dimension-fixed representation. To this end, we train the RN network jointly 
with the DQN model as we explain later. 

Actions: 

Given state 𝑠𝑠(𝑡𝑡), our agent shall activate the appropriate set of CPU cores, described with an activation vector 
𝑣𝑣  wherein each element corresponds to the CPU core index that shall be activated. Then, all the vBS 
instances will fairly share the pool of CPU cores in 𝑣𝑣. By avoiding pinning vBS workloads into specific cores, 
we aim at maximizing resource multiplexing and, consequently, at reducing the overall usage of computing 
resources. To ensure quick convergence, we need to preserve a low action space dimensionality. To address 
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this, we resolve our action into two steps. In step 1, our RL agent decides the total number of CPU cores that 
shall be activated to guarantee service. Thus, the set of actions 𝐴𝐴 is 𝐴𝐴 = {1, 2, … , 2𝑁𝑁}, where 𝑁𝑁 is the total 
number of physical cores available. Then, in step 2, we implement a deterministic rule 𝜌𝜌(𝑎𝑎) to minimize 
infrastructure cost. That is 𝜌𝜌 ∶  𝐴𝐴 ↦  𝒱𝒱 𝑎𝑎, where 𝒱𝒱 𝑎𝑎 is a set containing all possible activation vectors such that 
𝑎𝑎 = |𝑣𝑣|. Because 𝜌𝜌 is a pre-determined rule to minimize cost, the agent can learn its policy 𝜋𝜋 to guarantee 
service given 𝜌𝜌 as part of the environment ℰ. 

See, e.g., the General-Purpose Processor (GPP) of Figure 3-5 with 𝑁𝑁 = 2 . If 𝑎𝑎 = 1  then 𝒱𝒱𝑎𝑎=1   =
{(0), (1), (2), (3)}   all the activation vectors in 𝒱𝒱𝑎𝑎=1  are equivalent and any 𝑣𝑣 ∈ 𝒱𝒱𝑎𝑎=1  could be chosen 
trivially. However, this is not necessarily the case for other actions $a$ because, as we explained before, 
modern processors leverage multi-processing CPUs, being two virtual cores for each physical CPU the most 
common case. For instance, for 𝑎𝑎 = 2 (and the same GPP with 𝑁𝑁 = 2), the set of possible activation vectors 
is 𝒱𝒱𝑎𝑎=2   = {(0,2), (1,3), (0,1), (0,3), (1,2), (1,3)} . Though many of the vectors in 𝒱𝒱𝑎𝑎=2  are equivalent, 
others are not. Subset 𝒱𝒱�1,𝑎𝑎=2   = {(0,2), (1,3)} ⊂ 𝒱𝒱𝑎𝑎=2 contains equivalent activation vectors; and so are 
the activation vectors 𝒱𝒱�2,𝑎𝑎=2   = {(2, 3), (0, 1), (0, 3), (1, 2)} ⊂ 𝒱𝒱𝑎𝑎=2 . But any 𝑣𝑣1 ∈ 𝒱𝒱�1,𝑎𝑎=2  and any 𝑣𝑣2 ∈
𝒱𝒱�2,𝑎𝑎=2 are not equivalent. On the one hand, any 𝑣𝑣1 ∈ 𝒱𝒱�1,𝑎𝑎=2 incurs more cache contention than any 𝑣𝑣2 ∈
𝒱𝒱�2,𝑎𝑎=2 because all the cores in 𝑣𝑣1 share the same physical CPU.  

On the other hand, any 𝑣𝑣2 ∈ 𝒱𝒱�2,𝑎𝑎=2 is more costly than any 𝑣𝑣1 ∈ 𝒱𝒱�1,𝑎𝑎=2 because 𝑣𝑣1 allows turning off more 
physical CPUs, e.g., if 𝑣𝑣1 = (0,2) CPU 1 can be turned off (see Figure 3-5). Figure 3-6 illustrates an example 
of the operation of our algorithm during three-time steps. Importantly, give a pool of activated CPU cores, 
all vBS instances will fairly use those cores using a standard scheduler. 

In the assumption that, given any static mapping 𝜌𝜌, policy 𝜋𝜋 will provide an appropriate cardinality for the 
activation vector to guarantee network service (𝑎𝑎 = |𝑣𝑣|), we just need to design 𝜌𝜌 aiming to minimize the 
amount of infrastructure (physical CPUs) that has to be activated given 𝑎𝑎. Consequently, we propose the 
following simple rule. Let 𝑘𝑘(𝑣𝑣) ∈ {1,2, … ,𝑁𝑁} denote the number of physical CPUs that contain at least one 
virtual core activated in 𝑣𝑣. Then, given a set 𝒱𝒱 𝑎𝑎 with all possible activation vectors for action 𝑎𝑎, we define 
the ordered superset 𝒲𝒲𝑎𝑎: = �𝒱𝒱�1,𝑎𝑎, … ,𝒱𝒱�𝑁𝑁,𝑎𝑎�, where 𝒱𝒱�𝑖𝑖,𝑎𝑎 = {𝑣𝑣|𝑘𝑘(𝑣𝑣) = 1, 𝑣𝑣 ∈ 𝒱𝒱𝑎𝑎}. In the example above, with 
𝑎𝑎 = 2 and 𝑁𝑁 = 2, 𝒲𝒲𝑎𝑎: = �𝒱𝒱�1,𝑎𝑎=2, 𝒱𝒱�2,𝑎𝑎=2�. Note that 𝒱𝒱�𝑖𝑖,𝑎𝑎 = ∅ for some 𝑖𝑖. For instance, in our toy example 
with 𝑁𝑁 = 2, 𝒱𝒱�1,𝑎𝑎=3 = ∅ for 𝑎𝑎 = 3. Hence, we let 𝜌𝜌(𝑎𝑎) =  𝑣𝑣 ∈ 𝒱𝒱�𝑚𝑚,𝑎𝑎 such that 𝑚𝑚 ∶=  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖  {𝑖𝑖|𝒱𝒱�𝑖𝑖,𝑎𝑎 ≠ ∅}. 

 
Figure 3-5: Resource allocation in vRAN - simplified example of a GPP 

 
Figure 3-6: Resource allocation in vRAN - example of a sequence of actions from the proposed method 
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Reward:  

Our goal is to meet the traffic demand of all the vBS deployed in the system over time with minimum physical 
infrastructure (to save costs by turning off CPUs). Assuming a pool with 𝑁𝑁 physical CPUs and 2𝑁𝑁 virtual cores, 
where cores 𝑗𝑗 and 𝑗𝑗 + 𝑁𝑁 belong to the same physical CPU ∀𝑗𝑗 <  𝑁𝑁, we let 𝑧𝑧(𝑗𝑗) ∈  {0, … ,2𝑁𝑁 − 1} denote the 
sibling virtual core i given input virtual core j. A sibling core is that that uses the same physical CPU. For 
instance, in the toy GPP of Figure 3-5, with 𝑁𝑁 = 2 physical CPUs and 4 cores 𝑧𝑧(0) =  2 and 𝑧𝑧(2)  =  0. 

Following the related literature [38][39], we codify the cost associated to an activation vector 𝑣𝑣 using a linear 
model. Let us first denote 𝑐𝑐𝑗𝑗

(𝑡𝑡) ∈  [0,1], as the relative usage of computing core 𝑗𝑗 during interval 𝑡𝑡. If 𝑗𝑗 ∉  𝑣𝑣(𝑡𝑡), 

then 𝑐𝑐𝑗𝑗
(𝑡𝑡)  =  0; otherwise, 𝑐𝑐𝑗𝑗

(𝑡𝑡) is empirically measured. Then, we let 𝐸𝐸𝑗𝑗
(𝑡𝑡) model the (energy-related) cost 

associated with computing core 𝑗𝑗 ∈  {0, 1, … , 2𝑁𝑁 − 1} as follows: 

  

where 𝛼𝛼1   > 𝛼𝛼2  > 𝛼𝛼3. Intuitively, 𝛼𝛼𝑖𝑖 models the bias cost of a core, which is different depending on the 
activation state of core 𝑗𝑗 and its sibling. We choose 𝛼𝛼𝑖𝑖 and 𝛽𝛽 so that 0 ≤  𝐸𝐸𝑗𝑗 ≤  1. 

We now let 𝜏𝜏𝐷𝐷𝐷𝐷,𝑖𝑖
(𝑡𝑡)  and 𝜏𝜏𝑈𝑈𝑈𝑈,𝑖𝑖

(𝑡𝑡)  denote the DL/UL throughput experienced by vBS 𝑖𝑖 during interval 𝑡𝑡, and then 
formalize our reward function as: 

 

Algorithm training: 

As explained above, the goal is to train a policy to approximate an optimal action-value function 𝑄𝑄∗. Our 
policy 𝜋𝜋 is implemented by the structure of RN+DQN introduced above and, hence, we shall optimize the 
weights Θ ∶=  (𝜃𝜃1,𝜃𝜃2)  of the combined neural networks to estimate the Q-value function 𝑄𝑄(𝑠𝑠,𝑎𝑎;𝜃𝜃) ≈
 𝑄𝑄∗(𝑠𝑠,𝑎𝑎). To this end, we use a Smooth L1-loss function [40]: 

 

where 𝑥𝑥 = 𝔼𝔼�𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠′�∼𝜌𝜌��𝑦𝑦𝑖𝑖  –  𝑄𝑄(𝑠𝑠,𝑎𝑎;Θ𝑖𝑖)��  and 𝑦𝑦𝑖𝑖  =  𝑟𝑟 + 𝛾𝛾 𝑚𝑚𝑚𝑚𝑥𝑥𝑎𝑎(𝑡𝑡+1)  𝑄𝑄�𝑠𝑠′,𝑎𝑎(𝑡𝑡+1);Θ𝑖𝑖−1� . 𝜌𝜌  is a replay 
buffer from where we sample  (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′), 𝑦𝑦𝑖𝑖  is the temporal difference target, and 𝑦𝑦𝑖𝑖  −  𝑄𝑄 is the temporal 
difference error. We use a target network to stabilize the training process, that is, the learning agent uses a 
different target network with fixed weights that are used to compute the loss function used in turn to train 
the primary 𝑄𝑄 -network. It is crucial to stress that the target network's parameters are periodically 
synchronized with those of the primary 𝑄𝑄-network rather than being trained. The primary 𝑄𝑄-network is 
trained using the target network's 𝑄𝑄 values in an effort to increase the training's stability. Finally, we use a 
standard 𝜖𝜖-greedy approach for exploration. 
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 Experimental evaluation 
We have built an O-RAN-compliant experimental testbed to evaluate our solution. The testbed comprises 
different hosts, which contain the components of an O-RAN deployment and the ones to provide network 
connectivity to different connected UEs. Figure 3-7 depicts conceptually the testbed that we have built.  

First, this testbed has a host, which deploys the SMO and contains the Non-RT RIC where we deploy the AIRIC 
rApp ① [1]. Second, it has a separate server that hosts the O-Cloud platform where different O-eNB 
instances can be deployed and also comprises the Near-RT RIC ②. To implement the orchestration and 
management functions of the O-Cloud platform provided by the SMO, we have opted to implement the O-
eNBs deployed in the O-Cloud platform, containerizing srsRAN 8 using Docker. Thus, we use Docker API 
capabilities to orchestrate and manage containers to implement a minimal O2 interface. In addition, we used 
a metrics agent as Telegraf 9 to implement the performance monitoring jobs, which allowed us to gather 
metrics from the O-Cloud platform. Rather than using a commercial orchestrator such as Kubernetes or 
Docker swarm, we implemented our minimal orchestrator for performance and flexibility. Moreover, we 
have also implemented minimal O1 and E2 interfaces to allocate resources on the vBSs deployed. Our 
testbed also includes a host, which contains the Evolved Packet Core (EPC) to provide connectivity to the 
different UEs attached to each vBS ③. As the vBSs are containerized using Docker, we have isolated the 
networking from each one another. 

The O-Cloud host comprises an Intel i7-7700K GPP with 4 physical CPUs. We use Ubuntu 20.04.5 LTS with 
kernel 5.13.19. We reserve 1 physical CPU (2 virtual cores) for the OS and custom scripts to manage the 
experiments, interact with Docker API, and collect data, i.e., we emulate a small GPP vRAN platform with 
𝑁𝑁 = 2 physical CPUs and 4 virtual cores (as in). The testbed also integrates 4 USRP SDR boards to support up 
to 4 vBS (and the corresponding UEs to generate network load) ④. To generate uplink and downlink flows, 
we use mgen 10 to initiate a flow from/to the UE to/from the EPC. Given the constrained computing capacity 
of our testbed, we set the bandwidth of each vBS to 10 MHz. We have generated 60000 context-action-
reward data samples, evenly split for scenarios with 2, 3 and 4 vBS instances operating concurrently. We 
shuffled and split the dataset into a training and a testing set of 40k and 20k samples, respectively.  

 

 
Figure 3-7: Resource allocation in vRAN - Conceptual design of the evaluation testbed 

 
8 https://www.srslte.com/ 
9 https://www.influxdata.com/time-series-platform/telegraf/ 
10 https://github.com/USNavalResearchLaboratory/mgen  

https://www.srslte.com/
https://www.influxdata.com/time-series-platform/telegraf/
https://github.com/USNavalResearchLaboratory/mgen
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Figure 3-8: Resource allocation in vRAN - convergence evaluation with randomized contexts (left) and an 

incremental number of vBS (right). 

We have implemented our solution using PyTorch 11. On the one hand, the RN has one hidden layer and the 
same number of neurons than the output layer, 128. On the other hand, the DQN has one hidden layer with 
256 neurons. The initial parameters of the neural networks are initialized from a uniform distribution. We 
also use the Rectified Linear Unit (ReLU) activation function, and a normalization layer [41] in between 
hidden layers. For the 𝜖𝜖-greedy mechanism, we use a decay factor equal to 60% of the size of the training 
set. 

We also use a replay buffer with 20k samples and batches of 128 samples. Finally, we used Adam [42] as our 
optimizer. These implementation choices are intended to stabilize training based on [41][43]. 

 Convergence evaluation 
We start evaluating convergence. Figure 3-8 shows the normalized reward of AIRIC over training iterations. 
The UL/DL load and SNR generated in both plots are chosen uniformly at random. However, while the 
number of vBS instances is also random (between 2 and 4) in Figure 3-8 (left), they arrive sequentially in 
Figure 3-8 (right). In the former case, the reward converges to 0.95 in less than 5k iterations. In the latter 
case, there are expected bumps when new vBSs arrive, but these are small, within 5%. Hence, we conclude 
that the RN in our proposal correctly learns the relationship across vBSs and how to use its experience to 
quickly reach close-to-optimal performance. 

 Inference time evaluation 
To assess whether our solution is suitable for running in a Non-RT RIC controller, we measured the inference 
time of our approach for the different number of vBS cases. The results depicted in Figure 3-9 show inference 
times lower than 1 millisecond (ms) for all cases, which is well below the control-loop cycle of a RIC controller 
and validates AIRIC to operate therein appropriately. 

 
Figure 3-9: Resource allocation in vRAN - Inference time 

 
11 http://www.pytorch.org  

http://www.pytorch.org/
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 Performance benchmark 
To better understand the effectiveness of our solution, we now compare our solution against a Single 
Instance Resource Allocation (SIRA) approach. SIRA is purposely designed to orchestrate optimal resources 
across vBS instances under the assumption of full computing isolation between instances. Consequently, 
SIRA represents upper bounds attainable by existing works on vRAN CPU orchestration such as [34] [44]. 

To evaluate AIRIC, at every interval we choose uniformly at random the number of vBS instances, their DL/UL 
load and their DL/UL SNR and use both approaches (AIRIC and SIRA) to optimize the allocation of computing 
resources dynamically. In the case of SIRA, we use different (previously trained) models depending on the 
number of instances. For comparison, we also depict the performance of an oracle, labelled as “Optimal”, 
that finds the optimal action offline by exhaustive search. 

Figure 3-10 depicts the distribution of the normalized aggregate throughput performance of the system (top), 
the CPU assignments (middle), and the distribution of the reward achieved (bottom), for all the approaches 
conditioned to the presence of 2 (left), 3 (middle) and 4 (right) vBS instances. Conversely, Figure 3-11 depicts 
the absolute (left y-axis) and relative (right y-axis) power consumption savings achieved by all three 
approaches. These savings are in comparison to the power consumed when the default Linux scheduler 
manages all available CPU cores in the system, as indicated on the x-axis. The box plots represent the 25th 
and 75th percentiles (edges of the box), the median (line within the box), and the 5th -95th percentiles (error 
bars). We make three observations: the first observation is that AIRIC provides substantial savings, 
comparable to the optimal benchmark. Perhaps surprisingly, SIRA shows mildly higher savings in some cases, 
which leads to our second observation: the savings provided by SIRA come at a huge price in throughput 
performance, as shown by Figure 3-10. This is worse for denser scenarios: with 4 vBSs, SIRA barely saves 7% 
computing resources more than AIRIC in average but incurs 50% throughput loss in exchange. This is due to 
the fact that SIRA ignores the additional computing overhead caused by the noisy neighbour problem and 
often under-allocates resources, leading to PHY violations and throughput loss. The final observation is that 
AIRIC provides a throughput performance that is remarkably close to that of “Optimal”. 

  
Figure 3-10: Resource allocation in vRAN - performance benchmarking 



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

59 

 
BeGREEN [SNS-JU-101097083] 

 
Figure 3-11: Resource allocation in vRAN - Power savings 

 
Figure 3-12: Resource allocation in vRAN - realistic load traces 

Moreover, Figure 3-10 (bottom) confirms that the reward distribution attained by AIRIC is very close to the 
provided by the optimal oracle. These observations validate the design.  

 Realistic context traces 
We finally test AIRIC with realistic context dynamics. To this end, we have generated context profiles for 4 
different vBS instances, implementing network slices with different context profiles, during 5 straight days. 
Figure 3-12 shows the time evolution of both DL and UL network load for these 4 traces. Slice 1 emulates the 
behavior of one eMBB vBS in the city center, with common diurnal load patterns. Slice 2 emulates a vBS 
serving an office building, with a peak load during office hours (9h - 17h). Both context dynamics are adapted 
from those in [35]. Slice 3 and 4, in turn, emulate IoT-serving vBSs with constant loads when they are 
operative.  

Figure 3-13 depicts the distribution of the throughput performance (left) and the computing resource savings 
(right) of AIRIC, SIRA and the optimal oracle. Like before, SIRA provides around 5% higher CPU savings in 
average but incurs almost 25% throughput loss over the 5 days consequently. Conversely, AIRIC performs 
very closely to the oracle, with no throughput loss and around 17% overall computing resource savings, 
which validates AIRIC for realistic scenarios.  

 
Figure 3-13: Resource allocation in vRAN - Dynamic context profiles based on realistic traces. 
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3.3 AI/ML and data-driven strategies for energy-efficient 5G carrier on/off 
switching 

Energy-efficient control of RUs by switching cells on and off is a key use case in O-RAN's energy-saving 
optimizations [3], as these components significantly impact the network's overall energy consumption. As 
was introduced in [1], the strategy defined in BeGREEN is motivated by the analysis of a real measurement 
dataset from a Spanish MNO, which contains data from 2G, 3G, 4G, and 5G cells. In this initial analysis, we 
found a clear correlation between 5G load and energy consumption, and between both KPIs and time (e.g., 
time of day and day of the week), what opens the door to the definition of non-RT intelligent on/off strategies 
driven by ML-based predictors. In particular, due to the reported low load of 4G and 5G cells during off-peak 
hours, we considered a use case based on switching on/off 5G carriers and offloading the traffic to the 4G 
carriers in the same site and sector.  

In following sections, we provide an analysis of the energy saving opportunities and gains, the possible 
impact on cell and UE performance, and the initial validation of selected on/off strategies. The analysis and 
validation are mainly focused on the data of a specific urban and high loaded cell. However, in BeGREEN D4.3 
we will report a more general analysis based on different types or groups of cells (e.g., urban and suburban). 
In addition, we will evaluate the designed AI/ML and data-driven strategies and provide the final solution 
design. Note that the final objective is to implement this solution in the Intelligence Plane and use it to 
validate its design. Indeed, Section 3.7 provides initial results related to the demonstration done at the 2024 
EuCNC & 6G Summit.  

 Solution design 
As mentioned, we have access to two complete months of data from several sites that extend through urban 
and suburban zones located in a specific Spanish region. Concretely, the number of sites is 70, and each of 
them has three sectors accounting for a total amount of 210 cells. The list of KPIs is around 1300 for 4G and 
around 670 for 5G. The granularity of the dataset is of 15 minutes, so most of the KPIs in the list are average 
values over an interval of 15 minutes. These KPIs are available for the following 5G and 4G carriers:  

- 4G carriers: 700 MHz, 800 MHz, 1800 MHz, 2100 MHz and 2600 MHz. 

- 5G carriers: 700 MHz, 2100 MHz and 3500 MHz. 

It is worth mentioning that the 700 MHz and 2100 MHz carriers of the 4G and 5G technologies are deployed 
in Dynamic Spectrum Sharing (DSS) mode and, therefore, share bandwidth and radio equipment. The 
bandwidth for the DSS carriers and the 4G 800 MHz carrier is equal to 10 MHz. The 4G 1800 and 2600 carriers 
have 20 MHz bandwidth, and the 3500 MHz 5G carrier has 100 MHz of bandwidth.  

 

Figure 3-14: 5G carrier on/off - average of the aggregated energy consumption per day and site: 3500 MHz 
carrier vs rest of the carriers 
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As has been introduced, the considered energy saving approach is based on switching off the 3500 MHz 5G 
carrier whenever its traffic can be offloaded to the 4G carriers in the same sector. This approach provides 
two main benefits. First, it increases the energy efficiency of the 4G carriers by increasing the utilization of 
available resources. Second, and most importantly, it reduces the overall energy consumption in the network 
by switching off the 5G carriers when they are under low load. Indeed, as can be concluded from the analysis 
of the dataset, the 3500 MHz 5G carrier is the one consuming the most energy. Indeed, the aggregated 
energy consumption per day and site is almost comparable to the consumption of the rest of the carriers on 
average, as depicted in Figure 3-14. The data dispersion is due to the different configuration of the available 
sites, which have a variable number of carriers and sectors. 

In addition to the aggregated energy consumption per day, the dataset also reports the aggregated energy 
consumption of the three sectors of the 3500 MHz 5G carrier in each of the sites (Wh, each 15 minutes). This 
KPI allowed us to learn the trend of the energy consumption at different timescales (days, weeks, and months) 
and how it was correlated with the average load of the three sectors (percentage of occupied PRBs). As 
depicted in Figure 3-15, the correlation is evident. Additionally, it clearly illustrates the influence of baseline 
energy consumption on the overall KPI value, as the variation due to load ranges only from 400 Wh to 550 
Wh. This indicates that baseline consumption is significantly higher than the variation in energy due to traffic 
demand. Therefore, the impact of on/off switching strategies on energy savings will be very notable.  

Once established the objective and the potential benefits of the envisioned strategy, we focused on 
evaluating how many opportunities are available in terms of traffic offloading, i.e., the percentage of time 
that a 5G carrier could be switched off and its traffic offloaded to the 4G sectors. To do so, we considered a 
specific site, which is found on an urban zone of a big Spanish city. We have chosen this site because its high 
traffic demand, what means it could be considered a worst-case scenario, i.e., a scenario with a low number 
of opportunities to save energy. Figure 3-16 and Figure 3-17 show, respectively, the load pattern of the 5G 
carrier and the aggregated 4G carriers of a specific sector of this site, during a week. Note that the 4G plot 
shows the aggregated traffic pattern, which has been calculated as the demand on all the 4G carriers over 
the sum of total resources of those carriers.  

According to these KPIs, for each instant of time, we can evaluate if the 5G load can be offloaded to the 4G 
carriers. To achieve this, we first need to compute an equivalent PRB value or occupation for all the bands 
and technologies, by considering: 

• The bandwidth of the carriers, i.e. 100 MHz in the case of 3500 MHz carrier versus 10MHz or 20MHz 
of 4G carriers. This translates into a higher number of available PRBs in the case of 5G.   

• Sub Carrier Spacing (SCS) of the technologies, i.e. 30 kHz of 5G versus 15kHz in the case of 4G. This 
translates into half shorter slot duration in the case of 5G.  

• Duplexing techniques of the technologies, i.e. TDD with a pattern of DDDSU in the case of 5G and 
Frequency Division Duplex (FDD) in the case of 4G. This translates in a lower efficiency of 0.6 for the 
downlink direction in the case of 5G.  

According to these considerations, we can compute a number of PRBs per millisecond (ms) as follows: 

• 4G 700 MHz, 800 MHz, 2100 MHz:       10 𝑀𝑀𝑀𝑀𝑀𝑀

15 𝑘𝑘𝑘𝑘𝑘𝑘×12𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃

× 1
1𝑚𝑚𝑚𝑚

≅ 50 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑚𝑚𝑚𝑚

 

• 4G 1800 MHZ, 2600 MHz:       20 𝑀𝑀𝑀𝑀𝑀𝑀

15 𝑘𝑘𝑘𝑘𝑘𝑘×12𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃

 × 1
1𝑚𝑚𝑚𝑚

≅ 100 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑚𝑚𝑚𝑚

       

• 5G 3500 MHz:         100 𝑀𝑀𝑀𝑀𝑀𝑀

30 𝑘𝑘𝑘𝑘𝑘𝑘×12𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃

× 0.6 × 1
0.5𝑚𝑚𝑚𝑚

 ≅  330 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑚𝑚𝑚𝑚
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Figure 3-15: 5G carrier on/off - correlation of load (% of PRBs, blue), consumed energy (Wh each 15 mins, orange) 

 
Figure 3-16: 5G carrier on/off - 3500 MHz 5G carrier load pattern (% of utilised PRBs) 

 
Figure 3-17: 5G carrier on/off - 4G carriers aggregated load pattern (% of utilised PRBs) 

 
Figure 3-18: 5G carrier on/off - Traffic offloading opportunities – Example 
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Once obtained the equivalence between 5G PRBs and 4G PRBs, we can analyse, according to the carrier 
utilisation reported in the dataset, the energy saving opportunities that are available when applying the 
traffic offloading strategy.  

Figure 3-18 exemplifies this strategy for a specific site, sector and week of the dataset. The aggregated 
demand depicts the percentage of 4G resources occupied when considering the sum of 4G and 5G carrier 
loads, once computed the PRB equivalence. Whenever the aggregated load is below 100% it means that the 
5G carrier could be switched off without suturing the 4G carriers, whenever it is above 100% the 5G carrier 
needs to be active to allocate all the traffic demand. Note also that 4G and 5G traffic demands are indeed 
strongly correlated. According to these results, which correspond to a high loaded site, we can expect 
numerous energy saving opportunities in a real scenario. Indeed, in this case we have calculated that the 
percentage of week time we could switch off the 5G carrier of this sector was around the 56%. We must 
recall that these results are for this concrete site and sector, but some other sites found in suburban zones 
exhibit lower traffic demand patterns. This would translate into a higher number of energy-saving 
opportunities. This analysis will be reported in BeGREEN D4.3.  

Although the benefits in terms of energy consumption and efficiency of this offloading strategy are clear, the 
impact on the QoS needs also to be considered. First, depending on how this strategy is implemented, it will 
be more prone to wrong decisions leading to the saturation of the 4G carriers, and which might cause that 
the offloaded data volume cannot be entirely allocated. More conservative safety margins or thresholds in 
the 4G carriers might be used to minimize the probability of this condition to occur, but this would also 
decrease energy savings. In section 3.3.2.3 we will analyse how different strategies, e.g. based on daytime, 
load thresholds or traffic predictions, perform in terms of energy consumption reduction and 4G carrier 
saturation. On the other hand, even in non-saturated cases, traffic offloading from 5G to 4G will imply a 
penalty in the average throughput experienced by the UEs. First, due to the increase of load in the 4G carriers, 
UEs using this technology may experience a degradation in their QoS. Figure 3-19 illustrates how the KPIs of 
carrier occupancy and average throughput per UE are strongly correlated, leading to lower throughputs 
when the load increases.  

Figure 3-20 illustrates this correlation for the case of a specific site and two specific 4G and 5G carriers, which 
shows a more linear relationship. As future work, we plan to use this data to infere the expected throughput 
(and determine the throughput loss) of the 5G UEs when offloading them to 4G cells.  

 

 
Figure 3-19: 5G carrier on/off - Correlation between load (% of PRBs) and average throughput per UE KPIs – All 4G 

carriers in sites with active 5G carrier 
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Figure 3-20: 5G carrier on/off - Correlation between load (% of PRBs) and average throughput per UE KPIs – (a) 5G 

3500 MHz Cell and (b) 4G 2600 MHz Cell 

Secondly, although we are considering offloading the 5G traffic to the 4G cells in the same sector to minimize 
the impact on MCS, due to the different characteristics of 5G and 4G, such as the channel bandwidth, 5G UEs 
will experience a reduction of the PHY rate, what will impact their maximum achievable throughput. Figure 
3-21 shows the difference between the measured average throughput of 4G and 5G carriers for the same 
site and sector that we considered in the previous analysis. As depicted in the figures, the difference is 
notable and is indeed higher in low loaded conditions when such traffic offloading strategies will occur. 
However, it should be highlighted that the KPI being reflected in the figures, although being denoted as 
average throughput per UE, only considers the time to transmit a data burst excluding the data transmitted 
in the slot when the buffer is emptied [25]; i.e., it is a measure more related to achievable PHY rate than to 
the real average throughput that will experience usual UE applications. Therefore, it should not be used as a 
measure of QoS degradation due to traffic offloading.   

 
Figure 3-21: 5G carrier on/off - Average throughput per UE KPI during a day - 4G (left) and 5G (right). 
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The concrete analysis and definition of the QoS penalty, along with how this trade-off will be considered in 
the designed energy efficiency strategy, will be detailed in the BeGREEN D4.3. In the following section, we 
will present the initial validation of different on/off switching strategies, focusing on the saturation of 4G 
carriers as the main negative effect.  

 Initial evaluation 
This section introduces the on/off switching strategies that have been considered at this stage of the project, 
the motivation behind each of them, and how AI/ML can be used to improve them.   

 Cell energy consumption prediction 
Due to the correlation between load and energy consumption shown in Figure 3-15, we first considered the 
implementation and validation of an energy consumption predictor with the objective of predicting the 
amount of energy savings when switching off specific sectors. To this objective, we trained an XGBoost 
Regressor [45], using as input data the load of the sectors and the datetime. XGBoost is a well-known python 
library 12, which aims to provide easy-to-use models that can be tuned to fit the objective data. Despite 
providing several ML models, we used the XGBRegressor, which is a gradient boosting regressor widely used 
to address time series forecasting. Rather than the ML model, one of the key points in the process of 
developing the complete solution, was the pre-processing stage. Considering that we have access to data 
from several sites, we decided to do a cluster-based training. We selected sites with similar traffic demand 
patterns found in an urban area, and then trained a common model with all the data of the selected sites. 
Since we had access to two complete months of data, we decided to train the model with 45 days and test 
it with 15 days of data. As expected, due to the clear relationship between load and energy, the results were 
significantly good. We attained an R² score of 0.97 and a mean absolute error of 5.5 Wh. Figure 3-22 shows 
a comparison between real and predicted energy consumption for a specific 5G node during a week. 

Additionally, we used the model to get the estimated baseline consumption of the 5G nodes, since this value 
was not reported in the dataset. To this end, we used as input a simulated zero-traffic scenario for all the 
sectors of the cells, obtaining the following average results:  

• Node baseline energy consumption: 381 Wh every 15 minutes (1524 Wh per hour). 

• Sector baseline energy consumption: 127 Wh every 15 minutes (508 Wh per hour). 

These results are aligned with the dataset analysis introduced in the previous section. Unfortunately, in the 
case of the 4G carriers we do not have access to energy-related KPIs with a 15 minutes granularity, but only 
to aggregated values per day (see Figure 3-14).  

 
Figure 3-22: 5G carrier on/off - Energy consumption predictor results 

 
12 https://xgboost.readthedocs.io/en/stable/ 

https://xgboost.readthedocs.io/en/stable/
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This limits our estimation on the energy saved due to traffic offloading, which can be expressed as: 

𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝐸𝐸5𝐺𝐺 −  ∆𝐸𝐸𝐸𝐸4𝐺𝐺 = 𝐸𝐸𝐸𝐸𝐸𝐸5𝐺𝐺 +  ∆𝐸𝐸𝐸𝐸5𝐺𝐺 −  ∆𝐸𝐸𝐸𝐸4𝐺𝐺 , where  ∆𝐸𝐸𝐸𝐸5𝐺𝐺 >  ∆𝐸𝐸𝐸𝐸4𝐺𝐺  

𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >  𝐸𝐸𝐸𝐸𝐸𝐸5𝐺𝐺  

where 𝐸𝐸𝐸𝐸5𝐺𝐺  represents the energy consumed by the 5G carrier, which is composed by the baseline 
consumption 𝐸𝐸𝐸𝐸𝐸𝐸5𝐺𝐺  and the consumption due to the actual load ∆𝐸𝐸𝐸𝐸5𝐺𝐺 , and ∆𝐸𝐸𝐸𝐸4𝐺𝐺  represents the 
consumption due to the load increase in the 4G carriers. As previously introduced, actually we don’t have a 
way to estimate or compute ∆𝐸𝐸𝐸𝐸4𝐺𝐺 , which is left for future work.  But due to the higher energy consumption 
of 5G carriers, we can ensure that the provided energy savings will be at least as much as the baseline 
consumption of the 5G carriers.  

 Evaluated strategies 
To evaluate different strategies to control the 5G carrier on/off switching, we first considered an optimal 
case based on the traffic offloading opportunities analysed in Figure 3-18. In particular, for each instant of 
time in the dataset, off decisions were made when the PRBs of the 5G cell could be offloaded to the 4G cell 
without leading to saturation. We then used the results of this optimal strategy to benchmark the other 
strategies.  

First, we defined three simple strategies respectively based on the hour of the day, on the current aggregated 
load of the 4G carriers, and on the current load of the 5G carrier being monitored. In the case of the strategies 
based on the load, we considered a threshold of 40% to determine if the 5G carriers should be switched on 
(load higher than the threshold) or off (load lower than the threshold). This threshold was determined 
according to the observation of the 4G and 5G load trends depicted in Figure 3-18.  

In addition, we also considered two strategies based on ML models. First, using 5G load predictions instead 
of actual load values, aiming at improving the decision-making process of the strategy based on the 5G load. 
To this end, an XGBRegressor was trained to predict the future occupancy of 5G carrier sectors. The main 
difference between the energy and the load predictors is that the load model is used to predict the carrier 
load of the next period of 15 minutes, while in the energy case it estimated the energy consumption of the 
past 15 minutes.  

We carried out a filtering process of the available KPIs to be used as the model’s input. As reported in the 
previous section, the dataset contains hundreds of KPIs, but many of them were not giving any relevant 
information to the regressor. After a feature importance analysis, we selected a dozen of KPIs related to the 
average throughput, number of UEs, UL and DL load, and datetime. As in the energy case, the model was 
trained with the same cluster of cells. The difference in this case is that it was trained with just 20 days and 
tested with 10 days (i.e., one complete month). The current load predictor being used attained an R² score 
of 0.93 and a mean absolute error of 2.9% (percentage of PRBs). Figure 3-23 shows a comparison between 
real and predicted sector occupancy for a specific 5G node during a week.  

In addition to the predictor, we also developed a specific AI/ML strategy based on a classifier. The motivation 
of this classifier was to take on/off decisions just by considering 5G KPIs, i.e. the 5G load and the number of 
connected users, as an alternative to the strategy based on the 5G load predictions. This would eliminate the 
need for 4G data to make decisions, thereby saving network resources and enabling the 5G cells to 
independently decide when to switch on and off. As introduced in the previous section and illustrated in 
Figure 3-18, energy saving opportunities relies on the occupancy of both 4G and 5G carriers, which in this 
dataset an are very correlated.  

The classifier used was a Logistic-Regressor classifier from the Scikit-Learn python library. This model was 
chosen after a selection process, on which several models such as Decision Trees (DTs), Random Forests, 
Support Vector Machines (SVMs) etc., were tested.  
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Figure 3-23: 5G carrier on/off - 5G carrier load predictor results 

Although the SVM provided slightly better accuracy (0.5%-0.75%), it took a lot more to be trained when 
compared to the Logistic Regressor, which just took in the order of seconds, leading to a better efficiency. 
We also changed the default optimizer to the Newton-Cholesky optimizer which, in the documentation of 
the library, appeared as the most appropriate one in those cases in which the number of temporal samples, 
N, was much higher than the input features, P. In our case, in the training data, we had N equal to 130.000 
(45 days of data with 15 minutes granularity and a cluster of 30 sectors), and P equal to 2 (average number 
of RRC connected UEs and average load of the 5G carrier). In fact, changing this optimizer translated into an 
increase of the 4%-5% in the final score or accuracy of the model, which was finally equal to 94%.  

To generate the model, we trained the classifier in a supervised-learning way, using the decision of the 
optimal approach as the ground truth. The classifier was trained with approximately the 70% of the data of 
the dataset and tested using the remaining 30% of the data. The penalty of wrong decisions (i.e., incorrect 
on or incorrect off status) was the same. We found that most of the errors were in the switch on decision 
rather than in the switch off. In the evaluation subsection, it will be shown that this behaviour translates into 
a higher number of missed opportunities (i.e., wasted energy), but to a lower number of errors (i.e., 
saturation of 4G carriers). This conservative behaviour was caused by the uncertainty about the 4G load. This 
impacted specially cases where the 5G load was high (i.e., peak hours) and the 4G load was not totally 
correlated (i.e., lower than expected).  

Note that in all cases, we avoided strategies that combine 4G and 5G KPIs. This decision was made to 
minimize data requirements and simplify the strategies for evaluation in this first phase. Since these design 
choices also impact the system's energy consumption due the need of data sending, storing and processing, 
we wanted to first assess whether these simple strategies could achieve significant energy savings. 
Nevertheless, in future deliverables we will also consider additional strategies combining 4G and 5G data, 
evaluating the trade-off between the energy consumption of the model and the achieved energy savings.    

 Initial evaluation of strategies 
In this section, we evaluate different on/off switching strategies according to the data from the 
measurements dataset from a specific sector and during a specific week. As previously introduced, we 
considered a high loaded site located in the centre of a big city. The evaluated strategies are detailed as 
follows:  

• Optimal strategy: it knows in advance the load of the cells in each instant and avoids 4G cell 
saturation during the off phase. Used to benchmark the other strategies.  

• Hour strategy: it switches off the 5G carrier during the night, from 1 AM to 9 AM, and turns it on 
during the other hours of the day. 
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• 4G load strategy: Reactive decision according to current load. It switches off the 5G carrier whenever 
the aggregated load of all the 4G carriers is below the 40%; otherwise, it switches it on. 

• 5G load strategy: Reactive decision according to current load. It switches off the 5G carrier whenever 
the 5G carrier load is below the 40 %: otherwise, it switches it on. 

• 5G predicted load strategy: Proactive decision based in the load predictor presented in Section 
3.3.2.2. Whenever the prediction in the 5G carrier load is below 40% it switches it off; otherwise, it 
switches it on.   

• Classifier strategy: it directly relies in the decision taken by the classifier introduced in 3.3.2.2, which 
relies in the 5G carrier load and the number of connected UEs. 

We decided to evaluate the performance of each strategy according to the following metrics obtained from 
the dataset. Note that since we are limited by the time granularity of 15 minutes, we consider how each 
taken on/off decision in a given time impacted the results of the next 15 minutes period.  

• The percentage of correct switch on and switch off decisions in relation to the decision taken by the 
optimal strategy. 

• Percentage of total time spent in the off state.  

• The average saturation in PRBs in the 4G carriers due to wrong switch off decisions (i.e., 5G load 
cannot be fully offloaded). 

• The aggregated energy consumption saved due to correct switch off decisions (according to total 5G 
carrier consumption).  

• The aggregated energy consumption wasted due to missing a feasible switch off decision (according 
to total 5G carrier consumption). 

• The aggregated energy consumption saved due to correct switch off decisions according to baseline 
5G carrier consumption.  

• The aggregated energy consumption wasted due to missing a feasible switch off decision (according 
to baseline 5G carrier consumption). 

Table 3-2 summarizes the obtained results and how the different strategies performed compared to optimal 
strategy. First, it is remarkable that for all the strategies the amount of energy saved is very significant since 
the analysed 5G cell could remain off a significant period of time. Recall that this is for one week and one 
sector, and moreover, the data belongs to a high-loaded site in the dataset. Secondly, due to the high 
correlation between load and daytime, all strategies behave similarly regarding correct on decisions during 
peak times. As expected, the 4G load strategy results in the lowest PRB saturations by considering the load 
of the 4G carriers. Regarding off decisions, the hour-based strategy, being more conservative, achieves the 
least amount of energy savings. In contrast, the 5G load-based strategy is more aggressive and attains the 
highest energy savings for both the actual and predicted load strategies. Finally, since the classifier was 
trained to avoid PRB saturations by only considering 5G load, it performed more conservatively, interestingly 
yielding results very similar to the 4G load-based strategy. 

Table 3-2: 5G carrier on/off - Initial Validation of the 5G Carrier on/off Switching Strategies 

Strategy 
Correct 

ON 
Decisions 

Correct 
OFF 

Decisions 

Time in 
OFF State 

PRB Sat. 
Energy 
Saved 
(total) 

Energy 
Wasted 
(total) 

Energy 
Saved 

(baseline) 

Energy 
Wasted 

(baseline) 

Optimal 100% 100% 56.1% 0.0% 217 kWh 0 191 kWh 0 
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Hour 96% 64% 36.0% 7.9% 133 kWh 85 kWh 123 kWh 68 kWh 

4G Load 99% 85% 47.6% 3.4% 181 kWh 36 kWh 162 kWh 29 kWh 

5G Load 98% 91% 51.0% 6.2% 195 kWh 22 kWh 174 kWh 17 kWh 

Prediction 99% 91% 51.2% 7.4% 196 kWh 21 kWh 175 kWh 16 kWh 

Classifier 99% 83% 46.5% 5.5% 176 kWh 41 kWh 159 kWh 32 kWh 

These initial results indicate that simple strategies such as considering the actual 4G or 5G load could lead to 
huge benefits. However, we still need to characterize the impact that they will have on the QoS of the 4G 
and 5G UEs, what will be the main trade-off to be considered. In addition, these results considered just a 
single site, while the behaviour of these strategies in different areas (e.g. suburban and urban) may differ. In 
addition to the presented AI/ML-based strategies, other solutions such as combining 4G and 5G KPIs, 
determining the load threshold according to the site and daytime, or predicting the impact on QoS, may help 
to optimize the energy efficiency of the network. These aspects will be addressed in future deliverables.  Also, 
we plan to evaluate the impact of the different AI/ML strategies on the energy consumption of the 
Intelligence Plane. 

3.4 AI/ML-based algorithmic solutions for relay-enhanced RAN control 
This section presents a description of the proposed algorithmic solutions for the different relay control 
functionalities described in section 2.2.4. For each of these functionalities, a detailed workflow is presented 
to illustrate the interaction of the involved entities of the network. Then, a description of the algorithmic 
solution is presented, and an initial evaluation of the proposed algorithms is provided. Section 3.4.1 focuses 
on the detection of coverage holes functionality by using a clustering methodology. Then, Section 3.4.2 
presents a solution for the placement of fixed relays with the objective of addressing the identified coverage 
holes. Section 3.4.3, deals with the identification of UEs that may be good candidates to become RUE and 
act as a relay between the gNBs and neighbour UEs that may be located at the coverage holes. Finally, section 
3.4.4, proposes a solution for the activation/deactivation of the different relays/RUEs by means of 
Reinforcement Learning with the objective of addressing the coverage holes and reducing the overall energy 
consumption. Several initial results have been presented for each of the proposed solutions. 

 Detection of coverage holes 
This process aims to identify geographical regions with a relatively high traffic demand and poor coverage. 
As depicted in Figure 3-24, it is activated by the RFM rApp in the Non-RT RIC for specific gNBs with a too high 
drop call rate (see section 2.2.4.2). Then, the CHD process is executed at the AI Engine. This process collects 
the required measurements from the measurements datalake in the AI Engine and executes a clustering 
algorithm to identify the geographical location of the coverage holes (see steps 5-6).  

 
Figure 3-24: Relay control - coverage hole detection workflow 
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This clustering algorithm is described in Section 3.4.1.1. The resulting coverage hole characterization is stored 
in the coverage hole database located in the AI Engine. Finally, the end of the clustering process is notified 
to the RFM rApp (steps 8-9). 

 Coverage hole detection algorithm. 
The clustering process described in step 6 in Figure 3-24 is executed in two phases. The first phase aims to 
identify geographical regions with potential coverage holes, while the second phase consists of a validation 
of the identified coverage holes. A detailed description of the process is presented in the pseudo-code below 
(see Algorithm 3-1). 

Phase 1: Identification of potential coverage holes  
This process analyses the RSRP measurements collected during D days at a specific gNB. These 
measurements are available in the AI Engine datalake. In order to do this analysis, the measurements of each 
d-th day (with d=1,…,D) are split in N subsets. Each n-th subset (with n=1,…,N) contains the measurements 
collected during a period of time τ in the different N periods of the day. Each of these measurements contains 
the RSRP value, the time and geographical location of the measurement and the associated serving gNB. 
Then, the coverage hole detection process is run iteratively for each n-th period of each d-th day (see lines 
1-2 in Algorithm 3-1). In each iteration, the collected measurements are filtered to obtain a list of 
measurements with a RSRP lower than a specific threshold ThRSRP (see line 3 in Algorithm 3-1). The resulting 
set of measurements are used as input for a clustering process which groups the measurements in different 
clusters according to their geographical location (see line 4 in Algorithm 3-1). Different clustering 
methodologies can be considered, such as K-means, DBSCAN, etc. The proposed approach considers the 
DBSCAN methodology. The key idea of this clustering methodology is to identify a group of samples inside a 
neighbourhood of radius ε with a minimum number of samples min_samples.  The considered clustering 
methodology is described in BeGREEN D4.1[1]. The output of the clustering process for a given n-th period 
in a specific d-th day is a list of I clusters {C1(d,n),…, Ci(d,n),…, CI(d,n)} that represent the potential identified 
coverage holes. Each i-th cluster Ci(d,n) is characterised with a circle centered at the cluster centroid 
Centr(Ci(d,n)) with a radius equal to the cluster radius Rad(Ci(d,n)). This radius is calculated as the distance 
between the cluster centroid and the furthest geographical location that belongs to the cluster. Additionally, 
a cluster is also characterised with a list of the geographical locations that belong to the cluster and the total 
number of measurements associated to the cluster num_meas(Ci(d,n)). Only clusters with a total number of 
measurements higher than a threshold Thnum_meas are considered as valid (see lines 5-7 in Algorithm 3-1). 
After running the clustering process in each of the N periods for all the D days, a list of valid clusters C is 
obtained. This list contains all the valid clusters that represent the potential coverage holes that have been 
identified with the measurements collected during the D days of measurements. 

Algorithm 3-1: Relay Control - Coverage hole detection algorithm 
# Phase 1: Identification of potential coverage holes in a specific gNB. 

1 For d=1 with d<D 

2     For n=1 with n<N                    

3         Select the geographical locations with RSRP<ThRSRP  

4          Run a clustering process of the selected measurements. 

5          For i=1 with i<I  

6              if num_meas(Ci(d,n)) / τ > Thnum_meas 

7                  C  <-  Ci(n)  #Add the identified cluster Ci(n) in the list of all the identified clusters C. 

# Phase 2: Validation of the identified coverage holes 

8  For all i-th clusters in the list C 

9     For all j-th clusters (with i!=j) in the list C 

10         If   αi,j > Thoverlap 
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11             num_times_cluster(i)++ 

12             Merge cluster i-th and j-th and recalculate cluster centroid, radius and number of measurements. 

13             Remove cluster j from the list C         

14 For all i-th clusters in the list C 

15            Compute repetitiveness = num_times_cluster(i) / (N·D) 

16            Build matrix P and identify temporal patterns of the presence of each validated coverage hole. 

 

Phase 2: Coverage hole validation 

The validation of the identified potential coverage holes is done by comparing the clustering results obtained 
in the N·D iterations in phase 1. In order to consider a coverage hole as valid, it is necessary that the coverage 
hole is detected very frequently in different n-th periods of duration τ in the different d-th days. For this 
purpose, the algorithm compares the different potential coverage holes available in the list of clusters C. 
Two clusters i-th and j-th in the list C are considered to represent the same coverage hole if the overlap αi,j 
between them is higher than a specific threshold (i.e. αi,j >Thoverlap). This overlap αi,j can be measured 
according to the distance between their centroids and the summation of their cluster radius according to: 

 

where dist() represents the Euclidean distance, centr(Ci) and centr(Cj) represent the centroid of cluster Ci and 
Cj, and rad(Ci) and rad(Cj) represent the i-th and j-th cluster radius, respectively. According to previous 
equation, αi,j=1 means a total overlap between clusters i-th and j-th, while αi,j<0 means no overlap between 
them.  

For each i-th cluster in the list C, the algorithm iteratively searches a cluster j-th that satisfies the previous 
condition (i.e. αi,j>Thoverlap) and, in case it is found, the algorithm increases the number of times that cluster 
i-th is repeated in the list C (i.e. num_times_cluster(i)++), see line 11. In this case, cluster i-th and cluster j-th 
are merged into a single one and cluster j-th is removed from the list C (see line 12-13). The centroid of the 
merged cluster is calculated as the midpoint between the centroids of clusters i-th and j-th, and the radius 
of the merged cluster is calculated as the averaged radius of clusters i-th and j-th. The number of 
measurements associated to the merged cluster is determined as the summation of the values for both i-th 
and j-th clusters. After running this process for all the elements in the list C, the parameter 
num_times_cluster(i) is useful to represent the number of periods with duration τ in which the coverage hole 
represented by the i-th cluster has been identified.   

As a result, the output of this process is a list of clusters that contains the following items for each validated 
coverage hole: 

- Coverage hole centre: This corresponds to the geographical location the cluster centroid. 

- Coverage hole radius: This corresponds to the radius of the coverage hole. 

- Number of measurements associated to each coverage hole: This corresponds to the total number 
of measurements that have been obtained in the region of the coverage hole. It allows to represent 
the amount of traffic in the coverage hole. 

- Repetitiveness: This corresponds to the percentage of time periods with duration τ in which the i-th 
coverage hole was detected. It is calculated as num_times_cluster(i)/(N·D). A repetitiveness of 100% 
corresponds to a coverage hole that is detected in a specific geographical region in all the n-th time 
periods of all the D days. 

- Coverage hole presence matrix P: This is a NxD matrix where each term pn,d=1 if the coverage hole 
was detected at the n-th period of the d-th day and pn,d=0 otherwise. This matrix contains 



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

72 

 
BeGREEN [SNS-JU-101097083] 

information about the time periods when the coverage hole was identified and is useful to 
characterise the temporal patterns of the presence of the coverage hole. 

 Initial evaluation 
The proposed coverage hole detection methodology has been executed in a realistic scenario in a University 
Campus in Universitat Politècnica de Catalunya (UPC) [5]. The considered region is a 350 m x 125 m area with 
25 buildings of 3 floors. 5G NR coverage on the Campus is provided by three outdoor macrocells of a public 
MNO in band n78 (3.3-3.8 GHz). This scenario has been modelled by means of a system level simulator that 
models the geographical location of the different buildings and the propagation loss of the transmitted signal 
according to [46]. This simulator makes use of real measurements of the time evolution of the number of 
users located in different geographical regions [47] . The CHD algorithm has been tested using as input a 
collection of D=182 days of measurements. The considered time span for each day is between 8:00h and 
22:00h, divided in N=14 time periods of τ=1 hour. The simulation parameters and the CHD parameters are 
presented in Table 3-3. 

Table 3-3: Relay Control - Simulation Parameters 
Parameter Value Parameter Value 

D 182 days min_samples 10 

N 14 BS Carrier Frequency 3.7GHz 

τ 1 hour BS Channel Bandwidth 100MHz 

ThRSRP  -90dBm BS Transmitter power 35dBm 

Thnum_meas 2  BS Transmitted antenna gain 21dB 

Thoverlap 0.5  Path loss model UMa - 3GPP TR 38901 

ε 10 meters UE antenna gain 3dB 

 

 
Figure 3-25: Relay Control - Validated coverage holes with a repetitiveness higher than 0.25 

Table 3-4: Relay Control - Characterization of the Validated Coverage Holes 

  CH_1  CH_2 CH_3 CH_4 CH_5 CH_6 CH_7 
Centroid coordinates [60,44] [77,41] [67,75] [318,75] [72,74] [178,42] [85,105] 

Floor 1 0 1 0 0 0 0 
Radius [m] 8.6 8 5.5 9.11 7.13 8.26 5.4 
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Repetitiveness 0.51 0.79 0.48 0.26 0.39 0.36 0.29 

Figure 3-25 shows a map of the considered scenario with the coverage holes identified with a repetitiveness 
higher than 25% after running the CHD process. As shown, seven validated coverage holes have been 
identified in different buildings of the Campus.  

Table 3-4 illustrates the main coverage hole parameters, namely the centroid coordinates and the floor 
where coverage hole is detected (ground floor is represented with 0), the coverage hole radius and the 
coverage hole repetitiveness. It is worth noting a very large repetitiveness in coverage hole CH_2. Note also 
that coverage holes CH_1 and CH_2 are in the same building but at different floors. A similar situation 
happens with CH_3 and CH_5. 

To give a more detailed characterization of the identified coverage holes, Figure 3-26 shows different 
statistics of the average repetitiveness in different time scales. In particular, Figure 3-26a presents the 
average repetitiveness for different hours of the day. As shown, all the coverage holes exhibit a higher 
repetitiveness between 10:00h and 14:00h that corresponds to the periods of the day with higher number 
of connected users. Figure 3-26b, shows the average repetitiveness observed in different days of the week. 
As shown, the coverage holes have a higher presence in the weekdays (i.e. from Monday to Friday) that 
correspond to the days with higher number of users. Finally, Figure 3-26c, illustrates the average 
repetitiveness observed in the different weeks of the dataset. Note that the repetitiveness has a relatively 
large variability depending on the considered week. In particular, a low average repetitiveness is observed 
in weeks 16 and 17 that correspond to the period of Christmas, when the number of users in the Campus is 
low. It is worth noting that coverage hole CH_2 has high repetitiveness in most of the time periods at the 
different time scales while the rest of identified coverage holes have higher repetitiveness variability 
depending on the considered time period and time scale. 

   

(a)       (b) 

 

(c) 

Figure 3-26: Relay Control - hourly, daily, and weekly variability of the coverage hole repetitiveness 
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Figure 3-27: Relay control - relay placement workflow 

An initial evaluation of the computation time and the associated energy consumption of the Coverage Hole 
Detection process has been done. As described in 3.4.1.1, the clustering process based on DBSCAN is 
repeated N times every day, each time with the measurements collected in each period of duration τ. In the 
considered scenario that consists of 3 gNBs and setting N=14 and τ=1hour (see Table 3-3), the result of the 
Coverage Hole Detection process of the collected measurements during one day can be obtained in 
approximately 150 seconds. This process has been run with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz 
processor. The average power consumption of this processor is around 25W, leading to an energy 
consumption of 1.04Wh (3.74kJ) for each day. The energy consumption of the Coverage Hole Detection 
process is highly dependent on the network size (e.g. the number of gNBs and the size geographical region 
to be covered). Moreover, the required number of days D to be analysed in order to validate the identified 
coverage holes has also a relevant impact in the energy consumption. It is worth mentioning that the 
identified coverage holes may be valid for a limited period of time. For this reason, the periodicity in the 
execution of the Coverage Hole Detection process in each gNB is relevant to guarantee a precise coverage 
hole characterization but it is also important to assess the algorithm energy consumption. BeGREEN D4.3 
will deal with these aspects and their impact in terms of energy consumption. 

 Fixed relay placement 
This process aims to identify the geographical locations to deploy fixed relays with the objective of improving 
the performance at the identified coverage holes. It is activated by the RFM rApp in the Non-RT RIC when 
the placement of a new fixed relay is required in the coverage region of a specific gNB. As shown in Figure 
3-27 the Relay Placement (RP) process is executed at the AI Engine. It collects information about the coverage 
hole characterization available in the coverage hole database in the AI Engine. This information is used as 
input for the relay placement algorithm executed in step 4 (see Figure 3-27). This relay placement process is 
described in section 3.4.2.1. In case a new fixed relay needs to be deployed, its geographical location and 
configuration parameters is determined. This information is included in the relay database (see step 5). 
Finally, the result of the relay placement process is notified to the relay control (steps 6-7) that informs the 
network operator about the necessity of deploying a new fixed relay. 

 Fixed relay placement algorithm 
The fixed relay placement process is executed according to the pseudo-code presented in Algorithm 3-2, 
which is responsible for deciding the geographical coordinates to deploy the new fixed relay. This is done on 
the basis of the validated coverage holes characterised in the coverage hole database. For each coverage 
hole, the search space of possible geographical locations where the fixed relay can be placed is initially 
defined. The proposed methodology considers a square region of side x meters around the centre of the 
coverage hole (line 4 of Algorithm 3-2). Note that the value of x must be higher than the coverage hole 
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diameter. Note also that the fixed relay must be deployed outside the region of the coverage hole to 
guarantee good propagation conditions between the fixed relay and its associated gNB. This square region 
is tessellated in pixels of 1x1meter. For each pixel of this region, the path loss of the signal coming from the 
different gNBs is determined. Then, the pixel with the highest RSRP from the signals coming from the 
different gNBs is considered as the best position for placing the fixed relay. This process is repeated for all 
validated CHs. The output of this process is the geographical locations for each of the new fixed relays to be 
deployed. Once the fixed relays are deployed, this information is updated in the relay database. 

Algorithm 3-2: Relay Control - Relay Positioning 
1 Collect list of validated CHs  

2 For each validated Coverage Hole in the list 

3      Set the search area of possible locations where the relay can be placed                                 

4      Compute path loss in each 1×1m pixel inside the area defined in step (3)    

5      Obtain the coordinates of the pixel with highest RSRP from the signals coming from the different gNBs     

6 End for 

7 Gather optimal coordinates for each relay in an output file. 

 Initial evaluation 
The considered fixed relay placement methodology has been initially executed to determine the best 
location of a new fixed relay to provide coverage to Coverage Hole CH_2, identified in section 3.4.1.2, which 
is the validated coverage hole with the highest repetitiveness (see Table 3-4). The relay placement 
methodology considers all the potential geographical locations inside the building where the coverage hole 
CH_2 was detected. After running the relay placement methodology, the best geographical location to place 
the relay R1 is represented in orange colour in Figure 3-28.  

To evaluate the network performance improvement and the potential benefits in terms of energy 
consumption reduction with the placement of this fixed relay, an exhaustive search of different values of 
transmitted power of the different BSs has been done. For the different combinations of transmitted power 
values, an estimation of the coverage hole area has been done by determining the number of pixels of 1x1m 
in which the RSRP is below a threshold ThRSRP=-90dBm. On the other hand, the overall total power 
consumption has been estimated as: 

 
Figure 3-28: Relay control - best geographical location to place the fixed relay R1 (in orange) to address coverage 

hole CH_2 
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𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑃0,𝑟𝑟 + α𝑅𝑅 · 𝑃𝑃𝑇𝑇,𝑅𝑅 + �𝑃𝑃0_𝑏𝑏 + α𝑏𝑏 · 𝑃𝑃𝑇𝑇,𝑏𝑏

𝑁𝑁𝐵𝐵𝐵𝐵

𝑏𝑏=1

 

where P0,r represents the relay power consumption at zero RF output power associated to circuits, signal 
processing, etc., and aR corresponds to the linear dependency between the total relay power consumption 
and the radiated power PT,R. Similarly, the terms P0,b, αb and PT,b are the corresponding power model 
parameters for the b-th BS. In the considered scenario, the number of BSs is NBS=3. The considered simulation 
parameters are the ones that were presented in Table 3-3. Additionally, Table 3-5 presents the considered 
parameters of the deployed relay and the parameters of the power consumption model. 

Table 3-5: Relay Control - Model Parameters 

Parameter Value 

BS transmitted power range [35-50] dBm 

Fixed Relay transmitted power 10 dBm 

Relay antenna gain 3 dB 

Relay bandwidth 20 MHz 

Relay propagation model InH - 3GPP TR 38901 

Power consumption parameters [48] P0,r=6.8W, aR=4, P0,b=130W,  aBS=4.7 

Table 3-6 presents a comparison in terms of power consumption and the area of the coverage hole for the 
different configurations of BS and relay transmitted power. The first solution in Table 3-6 represents the 
benchmark configuration with an initial value of transmitted power of 35dBm at each gNB. In this case, a 
relatively large coverage hole is observed as it was shown in Figure 3-25. A possible solution to address this 
coverage hole is to increase the transmitted power of one of these gNBs. As shown in Table 3-6, increasing 
the transmitted power of one of the gNBs to 49dBm leads to a power consumption Ptot=793W, i.e. an increase 
in 82% in the total power consumption with respect to the benchmark configuration (where all three BS 
transmitted with 35dBm). Even in these cases, the coverage hole is not completely solved, as shown in Table 
3-6. In order to address the coverage hole, an exhaustive search of the transmitted power of the NBS=3 gNBs 
has been done with the aim of minimising the total power consumption Ptot.  

Table 3-6: Relay Control - Comparison of Different Combinations of Transmit Power at the BS and Relay  
 PT,1(dBm) PT,2 (dBm) PT,3(dBm) PT,R(dBm) Ptot(W) Coverage Hole Area (m2) 

Benchmark 
solution 

35 35 35 -- 434.58 224 

 
Sub-optimal 

solutions 

49 35 35 -- 793.04 24 
35 49 35 -- 793.04 7 
35 35 49 -- 793.04 11 

Best solution 
without relay 

38 38 48 -- 745.86 0 

Solution with 
a relay 

35 35 35 10 441.42 0 

* aBS=4.7, P0,b=130W, aR=4, and P0,r=6.8W  

The optimum solution found without deploying a relay is shown in Table 3-6 but it requires a total power 
consumption of 745.86W that corresponds to an increase of 71% with respect to the benchmark 
configuration. However, the deployment of the relay at the identified location (see Figure 3-28) with a 
transmitted power of PT,r=10dBm, addresses the problems at the coverage hole with a total power 
consumption Ptot=441.42W (see Table 3-6). This corresponds to a reduction in 40.8% of the total power 
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consumption with respect to the best solution found without relay. This reduction has a high dependence of 
the considered parameters in the energy consumption model. To illustrate this, Table 3-7 presents the power 
consumption reduction that can be obtained by deploying this fixed relay with respect to best solution 
without relays for different combinations of the terms P0,r, aR, P0,b and aBS [48][49]. As shown in Table 3-7, 
this power consumption reduction ranges between 37% and 71%. 

Table 3-7: Relay Control - Power Saving by Deploying Relay for Combinations of the Energy Parameters 

Parameters for the BS and relay 
energy consumption model 

aBS 28.4 28.4 4.7 4.7 2.8 2.8 2.57 2.57 

P0,b 156.38 156.38 130 130 84 84 12.85 12.85 

aR 20.4 4 20.4 4 20.4 4 20.4 4 

P0,r 13.91 6.8 13.91 6.8 13.91 6.8 13.91 6.8 

Power savings by deploying the relay 71.2% 71.5% 39.8% 40.8% 36.9% 38.5% 66.9% 70.1% 

As shown in Table 3-6, it is worth noting that the deployment of the fixed relay leads to a slight increase 
(around 1.5%) in the power consumption with respect to the benchmark solution. However, the deployment 
of the fixed relay may be useful to reduce the gNBs transmitted power (and consequently the total power 
consumption) and guarantee the coverage requirements in the whole cell. As a future line of work, an 
extension of these initial results will be done in BeGREEN D4.3, taking into account all the validated coverage 
holes identified in the scenario. Then, an assessment of the gNBs transmitted power reduction that can be 
obtained with the deployment of fixed relays (and the corresponding total power consumption reduction) 
will be evaluated guaranteeing, at the same time, the overall coverage requirements in the scenario. 

 Candidate RUE identification. 
As shown in section 3.4.2, coverage holes may be addressed by deploying fixed relays at specific geographical 
locations. However, it may lead to an increase in CAPEX and an increase in the total power consumption. 
Fixed relays consume certain amount of power P0,r even when no user is connected. In order to address these 
drawbacks, this section explores the possibility of taking advantage of UE relaying capabilities. According to 
this, some specific UEs can become RUE and act as a relay between the gNBs and neighbour UEs that may 
be located at the coverage holes. This approach requires the identification of UEs with some specific 
characteristics that make them good candidates to become RUEs. In general, static UEs with good 
propagation conditions with the BSs that remain active for long periods of time may be good candidates to 
become RUEs. 

Human mobility has usually a strong regularity and predictability since it is usually driven by daily/weekly 
schedules. With the development of recent technologies for the collection of historical user location and 
other context information, and the capacity of processing this information by means of AI/ML algorithms, an 
accurate characterization of future UE locations and UE mobility can be obtained. These technologies can be 
useful for the identification of periodicity/seasonality in the regions visited by the UEs during the day/s. 
Identifying metrics related to UE presence in different geographical regions, regularity of this presence, 
session duration statistics in each region, etc., is essential for the adequate identification of candidate RUEs.  

Figure 3-29 illustrates the workflow of the candidate RUE identification process. The main objective of this 
process is to identify UEs with some specific characteristics that may indicate that they can be good candidate 
UEs to become RUEs and act as a relay to serve neighbour users located in a coverage hole. This process is 
activated by the RFM rApp in the Non-RT RIC after the identification of coverage holes in specific gNBs. The 
candidate RUE identification process is run in the AI Engine. This process collects the characterization of the 
coverage holes from the coverage hole database and the available measurements of the historical sessions 
of UEs in this gNB available in the measurements datalake (see steps 3-4). This information is processed in 
order to identify good candidate UEs to serve as RUE. The details of this process is explained in section 3.4.3.1.  
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Figure 3-29: Relay Control - candidate RUE identification process 

The list and characterization of the candidate UEs to become RUEs for each identified coverage hole is send 
to the relay database in the AI Engine. Then, the end of the process is notified to the RFM rApp in the Non-
RT RIC (see step 8). 

 Candidate RUE identification algorithm 
The candidate RUE identification process described in step 5 in Figure 3-29 is presented in Algorithm 3-3. 
First, the information of the identified coverage holes is extracted from the coverage hole database. For each 
coverage hole, the proposed algorithm determines the list of UEs that have been located in a square region 
of side x centred at the coverage hole centroid, where x is a distance in meters, during at least one time 
period of T seconds in the available dataset. Note that the value of x must be higher than the coverage hole 
diameter and the candidate RUEs may be located outside the coverage hole region to guarantee good 
coverage for them. For this purpose, information about the sessions carried out by the different users at this 
geographical square region is collected from the measurements datalake. In particular, the time when each 
session is established and released is collected for each UE. According to the obtained information of these 
UEs, the proposed algorithm builds a matrix R that represents the presence of each UE in the specific 
geographical square region in each m-th time period of duration T for each d-th day (with m=1,…,M and 
d=1,…,D). This analysis is done in a UE-by-UE basis. Each element of the matrix R, rm,d=1 if the UE was 
connected at the m-th time period of the d-th day, and rm,d=0 otherwise.   

Algorithm 3-3: Relay Control - Candidate RUE Identification 
1 Get the list of validated Coverage Holes  

2 For each validated Coverage Hole 

3          Determine a square region with side x centered at the coverage hole center.                          

4 
         Determine the list of UEs that have been located inside the region defined in step (3)   
         during at least one time period of duration T.     

5 
         For each UE in the list of UEs    
                Build matrix R 

6                 Determine presence, average RSRP and session duration, daily and weekly regularity. 

7          End 

8          Select candidate RUEs 
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9 End 

This R matrix is processed for each UE to determine the following statistics: 

- Presence (%): Percentage of time periods with duration T in which a specific UE is present in the 
specified square area. A UE with a high presence is a good candidate to become a RUE. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(%) =
∑ ∑ 𝑟𝑟𝑚𝑚,𝑑𝑑

𝑀𝑀
𝑚𝑚=1

𝐷𝐷
𝑑𝑑=1

𝑀𝑀 · 𝐷𝐷
 

- Presence (%) w.r.t. the time periods when the coverage hole is detected: Percentage of time periods 
with duration T in which a specific UE is present in the specified area with respect to the number of 
time periods where the coverage hole is detected. The presence of the coverage hole in the different 
time periods is obtained from the matrix P available in the coverage hole database (see section 
3.4.1.1). This term is quite relevant because it indicates the availability of the corresponding UE to 
become a RUE in the time periods in which the coverage hole is detected. 

- Average RSRP reported by the UE when it is in the specific region. A UE with favourable propagation 
conditions with respect to its serving gNB is a good candidate to become RUE. 

- Average session duration: It is calculated as the time the UE is active in this specific area divided by 
the number of sessions established by the user in this area. A UE with a high average session duration 
is a better candidate to become a RUE. 

- Daily regularity (dr): This index measures the regularity of the presence of a UE in the specific area 
for the different time periods of the day. In order to determine this index, the R matrix is used. For 
the sake of clarity, this process is represented in Algorithm 3-4. For a given m-th time period of the 
day (with m=1,…,M), the percentage of time in which the UE is present at each specific m-th time 
period is determined for all the weekdays (i.e. from Monday to Friday) of the dataset. Then, the 
number of time periods of the day in which this percentage is higher than a specific threshold 
(Nperiods_above_th) is divided by the total number of periods of the day M (see step 4 in Algorithm 3-4). 
A UE with a high daily regularity means that it is located in the same geographical area at the same 
periods of the day in the different days, exhibiting a high regularity for the different weekdays. Users 
with a high daily regularity may be good candidates to become a RUE. 

Algorithm 3-4: Relay Control - Calculation of the Daily Regularity 
1 D’ is the number of weekdays (from Monday to Friday) in the dataset. 

2 For each m=1 with m<M 

3         If    
∑ 𝑟𝑟𝑚𝑚,𝑑𝑑′
𝐷𝐷′
𝑑𝑑′=1

𝐷𝐷′
> 𝑇𝑇ℎ 

4                 Nperiods_above_th=Nperiods_above_th+1 

5 dr=Nperiods_above_th/M 

- Weekly regularity: This index measures the regularity of the presence of a UE in the specific area for 
the different time periods of the week. In order to determine this index, the week is divided in N=M·D 
number of time periods, each one with duration T. For a given n-th time period of the week (with 
n=1,…,N), the percentage of times in which the UE is present for all the weeks of the dataset is 
calculated. Then, the number of time periods of the week in which this percentage is higher than a 
specific threshold is determined and divided by the total number of periods in the week. A UE with 
a high weekly regularity indicates that it is located in the same geographical area at the same time 
periods of the week for the different weeks, exhibiting a high regularity for the different weeks. 
These users may be good candidates to become a RUE. 

After analysing these metrics for all the UEs in the list, a ranking of the most adequate UEs that may become 
RUE is obtained. This process is repeated for all detected CHs. The output of this process is a list and 
characterization of candidate RUEs for each coverage hole. This information is updated in the relay database. 
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 Initial evaluation 
The candidate RUE identification process has been run for all the coverage holes identified in section 3.4.1.2. 
For each coverage hole, the considered methodology searches for candidate RUEs located in the same 
building and floor where the coverage hole was identified. Table 3-8 presents the best candidate RUEs 
identified in each of the coverage holes.  

Table 3-8: Relay Control - Best Candidate RUEs Identified in Each Coverage Hole 

 

 

Candidate 
RUE 

Identifier 
Presence (%) 

Weekly 
Regularity 

Weekday 
Regularity 

Avg. Session 
Duration (h) 

CH_1 
(1,60,43) 

UE_943 58.28 0.75 0.10 11.9 
UE_456 53 0.64 0.47 10.6 

CH_2 
(0,81,41) 

UE_765 100 1 1 14 
UE_474 44.5 0.49 0.26 6.18 

CH_3 
(1,69,76) 

UE_992 77.30 0.56 0.59 5.38 
UE_093 63.1 0.69 0.56 4.04 

CH_4 
(0,318,75) 

UE_184 39.7 0.53 0.04 1.56 
UE_382 30.68 0.47 0 1.46 

CH_5 
(0,74,74) 

UE_920 100 1 1 14 
UE_429 60.0 0.83 1 8.4 

CH_6 
(0,178,42) 

UE_544 56.9 0.23 0 1.71 
UE_992 44.2 0 0 2.5 

CH_7 
(0,85,105) 

UE_302 26.4 0.65 0 1.66 
UE_032 25.2 0.57 0 1.15 

 

In coverage hole CH_1, user UE_943 can be a RUE during almost 60% of the time when the coverage hole is 
detected. As shown, this user has a relatively high weekly regularity and a long average session duration. 
However, it should be necessary to check that there is any other UEs that can serve as RUE in the rest of the 
time in which this coverage hole is detected. In case that no such UEs are found, the deployment of a fixed 
relay may be necessary. In turn, in coverage hole CH_2, user UE_765 is available to serve as RUE in the time 
periods when the coverage hole is present. In this case, it may not be necessary to deploy a fixed relay for 
addressing coverage hole CH_2. Finally, there are other coverage holes, such as CH_7, in which the best-
found candidate RUE would only be available to serve UEs in the coverage hole during a 25% of the time 
when the coverage hole is detected. In this case, many different UEs would be needed to serve as RUE 
alternatively in order to cover the 100% of the time. In these cases, the deployment of a fixed relay may be 
a better solution. 

An initial evaluation of the computation time and the associated energy consumption of the Candidate RUE 
Identification process has been done. The result of this process for the collected measurements during one 
day can be obtained in approximately 6 seconds in the considered scenario with 7 coverage holes in the 
University Campus region covered by 3 gNBs. The process has been run with an Intel(R) Xeon(R) Gold 5218R 
CPU @ 2.10GHz processor. The average power consumption of this processor is around 25W, leading to an 
energy consumption of 0.04Wh (144J) for each day. This corresponds to a very low energy consumption. 

 Relay activation/deactivation process 
The proposed methodology aims to smartly activate the relays to improve the performance of UEs located 
in coverage holes and deactivate the relays when they are not necessary in order to reduce energy 
consumption. For this purpose, this methodology makes use of recent collected measurements and status 
of the different relays (available in the relay database). This information and an activation/deactivation 
trained model is used to take adequate decisions of relay activation/deactivation. Two kinds of relays are 
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considered: i) fixed relays deployed in the network and ii) RUEs, (i.e. UEs with relaying capabilities).  

The relay database must contain updated information of all the fixed relays and candidate RUEs connected 
to each BS. On the one hand, concerning fixed relays, this database contains information about the relay 
geographical location, the relay status (i.e. whether the relay is active/inactive) and an availability probability. 
On the other hand, for the particular case of RUEs, similar parameters are considered: 

• RUE location: when a UE establishes a connection with a gNB, it is necessary to check whether this 
UE has relaying capabilities and consent and whether it belongs to the list of candidate RUEs for this 
gNB. Additionally, it is necessary to check that the UE has good propagation conditions with the 
serving gNB. In this case, the RUE location is collected and updated in the relay database. It is worth 
noting that, although RUEs are usually static/semi-static UEs, their location may change. 

• RUE status: It indicates whether the relaying functionality is active/inactive. 

• RUE availability probability: The spectral efficiency in the link BS-RUE is measured, and in case that 
this value is higher than certain threshold, then, the RUE is considered to be available. Other metrics 
such as battery level, etc. may also be checked to determine the RUE availability probability.       

For all the relays connected to each gNB, the relay activation/deactivation process is run continuously, and 
the relay status is updated with a certain periodicity Trelay_status_update. The relay activation/deactivation 
decisions are done based on a trained DQN that combines RL with DNNs. As explained in BeGREEN D4.1 [1], 
with a periodicity Trelay_status_update, an agent takes the decision of activation/deactivation of a relay (i.e. action) 
to be applied for the next time period. This action is based on the state observed in the previous time period 
and a policy π that has been learnt in the DQN training process. The state observed in the previous time 
period is based according to the following information: 

• The current status of the relay (i.e. whether each relay was active or not in the previous time period).  

• The average number of UEs that have been served by the relay, in case that the relay was active in 
the previous time period.  

• An estimation of the number of potential users that would have been served by the relay, in case 
the relay was inactive in the previous time period. For the case of fixed relays, this estimation can be 
done by observing the number of users that have been served in previous periods of time in which 
the relay was active (e.g. at the same period of the day in previous days). In turn, this kind of 
estimation may not be valid for the case of RUEs since they may change its geographical location as 
a function of time. However, the estimation of potential users that would have been served by the 
RUE in the previous time period can be obtained by means of proximity analytics information 
collected by means of the NWDAF. 

The procedure for obtaining NWDAF proximity analytics can be done as described in the following  [50]: 

1. A request is sent to the NWDAF for analytics related to relative proximity from a specific RUE (i.e. 
statistics of number of UEs that satisfy a proximity criterion with respect to the RUE in the previous 
time period with duration Trelay_status_update). 

2. The NWDAF may follow the UE Input Data Collection Procedure via the Data Collection Application 
Function (DCAF). The DCAF may collect proximity related input data directly from the UE Application, 
for NWDAF to determine a list of UEs fulfilling certain proximity criterion [51].  

3. The NWDAF derives requested analytics. 
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Figure 3-30: Relay Control - workflow of the relay activation/deactivation training process. 

It is possible to set a continuous reporting of relative proximity information with a periodicity Trelay_status_update. 
By combining the status of the relay and the previously mentioned metrics, the proposed methodology 
makes use of a policy based on a trained DQN model, see BeGREEN D4.1 [1], to take adequate relay 
activation/deactivation decisions. Section 3.4.4.1 presents the process and workflow for the model relay 
activation/deactivation model training while section 3.4.4.2 focus on the process of inference to take the 
relay on/off decisions. 

 Relay activation/deactivation model training 
Figure 3-30 illustrates the process of training of the relay activation/deactivation model. The training process 
can be triggered manually by the ML developer. Alternatively, under certain specific conditions, or with a 
given periodicity, a retraining process may be triggered by the Relay Activation/Deactivation (RAD) assist 
rApp that continuously monitors the performance of the ML model. In case that an available dataset is used 
for training, then, this dataset is directly stored in the datalake of the AI Engine (see step 1a in Figure 3-30). 
In turn, in case that it is necessary to generate a new dataset for training the model (option b in Figure 3-30), 
then, the Data collection rApp in the Non-RT RIC triggers the collection of new measurements. During a 
specific training period, collected measurements (such as the status of the relay, the number of users served 
by the relay or the number of potential users) are collected and stored in the Non-RT RIC datalake (see step 
2).  

For the case of RUEs, the number of potential users that would have been served if the relay was active in 
the previous time period is obtained by means of proximity analytics information by means of the NWDAF. 
Then, the number of UEs fulfilling a specific proximity condition to the RUE is requested to the NWDAF (via 
DCAF) and sent to the datalake in the Non-RT RIC (see step 2b). Once the process of generation of the dataset 
is finished, the dataset is stored in the datalake of the AI Engine (step 3-5). Then, the training process may 
be triggered manually by the ML developer or by the RAD Assist rApp. Training data stored in the datalake is 
collected and the model training process is run in the AI Engine. Finally, the trained AI/ML relay 
activation/deactivation model is stored in the AI/ML model catalogue in the AI Engine. The details of the 
training process were described in BeGREEN D4.1 [1], and are briefly explained as follows. 

The state s(t) is represented as a vector associated with a particular BS b, and it has different components 
listed in the following:  

• Cb(t)={ab,1(t), ab,2(t),…,ab,R(t)} denotes the configuration (ON/OFF) of all relays in the previous time 
period t.  
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• Nb(t)={Nb,1(t), Nb,2(t),…, Nb,R(t)} corresponds to the average number of UEs that have been served by 
each relay in the previous time period t.  

• N’b(t)={N’b,1(t), N’b,2(t),…, N’b,R(t)} is the average number of UEs that would have been served by the 
r-th relay in the previous time period if the relay had been active. The total number of components 
in the state is 3·R where R is the number of considered relays. 

A given action a(t) can be seen as a vector Cb(t)={ab,r(t)} that contains the relay activation configuration 
applied every time window accounting for all the considered relays. The so-called action space contains all 
relay activation configurations. Since a relay has only 2 possible modes (activated and deactivated), the total 
number of possible actions in the action space is 2R. 

In order to learn the policy that leads to the best action given a specific state, a reward function is used in 
the training process. As described in D4.1, the reward function r(t+1) that assesses the action a(t) that is 
selected in a specific state s(t) can be expressed as: 

r(t+1)=1−
1
𝑅𝑅
�𝑐𝑐𝑏𝑏,𝑟𝑟(𝑡𝑡)
𝑅𝑅

𝑟𝑟=1

 

with 

𝑐𝑐𝑏𝑏,𝑟𝑟(𝑡𝑡) = �
𝛼𝛼 𝑖𝑖𝑖𝑖     𝑎𝑎𝑏𝑏,𝑟𝑟(𝑡𝑡) = 1 and 𝑁𝑁𝑏𝑏,𝑟𝑟(𝑡𝑡) < 𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛
𝛽𝛽 𝑖𝑖𝑖𝑖    𝑎𝑎𝑏𝑏,𝑟𝑟(𝑡𝑡) = 0 and 𝑁𝑁𝑏𝑏,𝑟𝑟

′ (𝑡𝑡) ≥ 𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛
0 otherwise

 

Where Nb,r(t) is the average number of UEs served by the r-th relay in period (t, t+Trelay_status_update) while N’b,r(t) 
is the average number of potential UEs that would have been served by the r-th relay in period (t, 
t+Trelay_status_update) if the relay had been active. According to the previous equation, cb,r(t)=α if the r-th relay 
was active in the previous time period (i.e. ab,r(t)=1) and the number of served users was below a threshold 
(i.e. Nb,r(t)<Thnum). In turn, cb,r(t)=β if the r-th relay was deactivated (i.e. ab,r(t)=0) but the number of users 
that would have been by this relay in the previous time period was higher than a threshold (i.e. N’b,r(t)≥Thnum). 
Initially, α=1 and β=1 can be considered but also other possible values may be studied. 

The training process described in step 8 in Figure 3-30 is detailed in Algorithm 3-5. At each training step, the 
agent observes the state and chooses an action a(t) following an ε-greedy policy that selects the action based 
on the current policy with probability 1-ε and a random action with probability ε. This random action 
selection is needed in the training process for incorporating the capability to explore new actions that are 
different from the ones that the current policy would select. After applying the selected action, the obtained 
reward is measured and saved in an experience tuple dataset. Every time that the experience dataset reaches 
its storage capacity, older experiences are removed and substituted by recent ones.  

Algorithm 3-5: Relay Control - DQN Training 
1 Initialise DNN counter p=0 

2 For t=0 with t<Num_train_steps 

3            Collect state s(t) 

4            Generate random number ε’ between 0 and 1 

5            If t<InitialCollectSteps 
6                 Select a random action a(t) 

7            else If  ε’< ε 

8                 Select a random action a(t) 

9                    Else 

10                 Select an action a(t) based on policy π 

11            End if 
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12            Compute r(t+1) and s(t+1) according to a(t) 

13            If D is full 

14                  Delete the oldest experience 

15            Store experience <s(t), a(t), r(t+1), s(t+1)> in D 

16            Sample randomly a minibatch of experiences U(D) 

17            Compute loss function L(θ) 

18            Compute the mini-batch gradient descent ∇L(θ) 

19            Update weights θ of evaluation DNN 

20            If p<P 

21                    Update the weights of target DNN θ- = θ and set p=0 

22            Else 

23                    p=p+1 

24            End if 

25 End for 

 

Moreover, at the beginning of the training, the agent selects actions randomly (i.e., ε is set to 1) to gather a 
wide variety of experiences. This is maintained during a number of InitialCollectSteps training steps. The 
update of the weights of the evaluation DNN is done at every training step by considering the experiences 
accumulated in the experience dataset. An updating process consists of making a random selection of a mini-
batch U(D) of past experiences J belonging to the dataset. Then, the update is performed by means of a mini-
batch gradient descent procedure. To this end, the average Mean Squared Error (MSE) for all the experiences 
in U(D) is computed. Then, the mini-batch gradient descent is computed by the derivative of L(θ) with respect 
to θ. The final step consists of updating the weights of the evaluation DNN. Following each update of θ, the 
obtained Q(s,a,θ) will be used to select new actions. In relation to the weights θ− of the target DNN, they are 
updated as θ− =θ after every P update of the evaluation DNN. More details of this process were presented in 
BeGREEN D4.1 [1].  

 Relay activation/deactivation model inference 
Figure 3-31 illustrates the process of relay activation/deactivation inference based on the trained model. As 
shown in Figure 3-31, the process is repeated iteratively with a periodicity Tupdate_relay_status. The first step 
consists on the collection of measurements related to the number of users served by each relay Nb,r(t), 
number of potential users N’b,r(t) and the status of the relay (i.e. whether the relay was active/inactive in the 
previous time period). For the case of RUEs, the number of potential users served by a RUE is obtained from 
the NWDAF via DCAF. Collected measurements are sent to the AI Engine via the RAD assist rApp (see step 2 
in Figure 3-31). The status of the relay that is stored in the Relay database is also used by the AI/ML model 
inference (step 3). Then, the trained model is collected from the AI/ML model catalogue. The collected 
information and the trained model are used to generate a relay activation/deactivation recommendation for 
the next period Tupdate_relay_status (see step 5). This recommendation is sent to the relay control at the SMO that 
sends a command to the nodes with the activation/deactivation action of the relay (steps 6-7). Finally, the 
relay status is updated in the relay database (Step 8). The RAD assist rApp continuously evaluates the 
performance of the used activation/deactivation model to determine the necessity of model retraining.  

 Initial evaluation 
The proposed relay activation/deactivation methodology has been initially evaluated for taking adequate 
decisions of the activation/deactivation of a fixed relay deployed to address the coverage hole CH_2 (see 
Figure 3-25). The DQN model has been trained using measurements collected during 6 days. The step 
duration is 30 seconds. The DQN configuration parameters are summarised in Table 3-9. 
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Figure 3-31: Relay Control - workflow of the relay activation/deactivation inference 

Table 3-9: Relay Control -  DQN Algorithm Configuration Parameters 
Parameter Value 

InitialCollectSteps 500 steps 

Num_train_steps 17280 steps 

Experience replay buffer length 100·103 

Mini-batch size (J) 64 

Trelay_status_update 30s 

DNN updating period (P) 500 steps 

Discount factor (γ) 0.9 

Learning rate (α) 0.001 

ε value (ε-greedy) 0.1 

Thnum 0.5 

  
DNN architecture 

Input layer: 3 nodes 
Two Hidden layers: 100 and 50 nodes 
Output layers: 2 nodes 

In the training process, the obtained policy is evaluated every 12 hours. The evaluation of each policy is 
executed with a simulation of the system during 2 hours. Then, the average reward obtained by this policy 
is computed. Figure 3-32 shows the evolution of the average reward of the obtained policies. As shown, the 
average reward increases as a function of the training time. Note that after 36 hours of measurements used 
for training, the average reward is around 0.95 (i.e. very close to the maximum reward of 1) and the learning 
process has converged since the average reward remains almost constant for the rest of the training time.  

Figure 3-33 presents an example of the time evolution of the relay activation/deactivation decision according 
to the policy learnt in the training process. This example illustrates the number of served users/potential 
users in the period between 8h and 12h of a specific day. As shown, in the time periods when there are no 
users to be served by the relay, the policy decides to switch off the relay (Relay status=0 in Figure 3-33) with 
the objective of reducing energy consumption. In turn, in time periods when there are users to be served by 
the relay, the relay is switched on (Relay status=1).  
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Figure 3-32: Relay Control - Evolution of the average reward of the obtained policies in the training process 

 
Figure 3-33: Relay Control - Evolution of the activation/deactivation actions with the obtained policy 

After the analysis of the relay activation/deactivation decisions during the day in which the proposed 
methodology was tested, it was observed that the relay was active in 946 periods of 30 seconds (i.e. 
t_active=7.88 hours) and the relay was deactivated in 1934 periods of 30 seconds (t_innactive=16.12 hours). 
Then, the energy saved during a specific day, by turning off the relay in periods when there are no users to 
be served can be calculated as:  

Energy_saving=t_innactive·(P0,r-Psleep) 

According to [48], the power consumption when the relay is active at zero RF output power is P0,r=6.8 W. 
Concerning the term Psleep, the Advanced Sleep Modes defined in [52]consider the case of the sleep mode 
SM4 that turns off most of the components of the relay when it is deactivated. Then, the value of Psleep is 
determined as 10% of the value of the term P0,r. According to previous equation, the energy that can be 
saved during this specific day by deactivating the relay is around 98.6 Wh (354.9 kJ). It is worth noting that 
the relay can be set to sleep mode SM4 since the relay activation time is quite fast (i.e. in the order of 
hundreds of milliseconds [52]) with respect to the considered period of activation/deactivation decisions of 
30 seconds. The energy savings that can be obtained may differ depending on the presence of users near the 
relay location and also on the considered day. As an example, in a geographical region without users to be 
served by a specific fixed relay (e.g. in a weekend day), the relay can be deactivated during the whole day 
leading to a maximum energy saving equal to 147 Wh (529.2 kJ). In BeGREEN D4.3 a more detailed evaluation 
of the total energy savings that can be obtained considering all the relays/RUEs deployed in the scenario. 

Concerning the computation time and the associated energy consumption of the Relay 
Activation/Deactivation process, an initial evaluation has been done for the training of a single relay. As 
shown in Figure 3-32, the training process provides a good relay activation/deactivation policy after analysing 
36 hours of measurements. In the considered scenario, this is obtained by executing the training process in 
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approximately 40 minutes with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz processor. The average 
power consumption of this training processor is around 25 W, leading to an energy consumption of 16.6 Wh 
(59.76 kJ). 

Concerning the computation time for the model inference to take relay activation/deactivation decisions, 
the execution time of this process is approximately 0.44 ms. Considering that the model inference is executed 
with a periodicity of 30 seconds and that the power consumption of the processor is 25 W, the energy 
consumption is around 0.0088 Wh (i.e. 31.68 J) for each day and relay.  

3.5 Traffic-aware compute resource management to enhance UPF energy 
efficiency 

This section presents strategies to manage the compute resources of the edge servers hosting UPF instances 
of the 5G according to the traffic demand and aiming at reducing the energy consumption. In BeGREEN D4.1 
[1] we introduced the main concepts and strategies to be considered when addressing this problematic: 
dynamic scaling the CPU frequency through the CPU P-states [53] and the number of threads. However, 
during the experimental characterization using the UPF implementation of the Open5Gs 13 open source 5GC, 
we found some limitations regarding its packet processing capabilities, i.e., single-threaded operation and 
low performance due to kernel-based packet processing [54]. Therefore, we decided to switch to an 
alternative open-source UPF implementation from OpenAirInterface (OAI) 14, which is based in VPP 15 and 
DPDK 16. These fast packet processing technologies foster the increase of throughput, making them more 
suitable for real operational scenarios. However, they intensively utilize compute resources, what may lead 
to higher energy consumption [55] and open the door to energy efficiency-focused strategies.  

In the following subsections we will detail the UPF implementation, the studied strategies and the initial 
evaluation based on an experimental characterization. Note that, as was introduced in D4.1 [1], the final 
objective is to enable proactive resource allocation based on traffic forecasting. To this end, we will use the 
real data from the Packet Data Network Gateway (P-GW) of Spanish MNO, as was presented in Section 3.3. 
We have started evaluating some ML models based on Facebook’s Prophet 17, and the results will be reported 
in BeGREEN D4.3.  

 Solution design and use case 
The OAI UPF-VPP is an open-source implementation of the 5GC UPF (Release 15 & 16) based on VPP and 
DPDK technologies. The main components of its implementation are i) the UPF-VPP application logic, (ii) the 
DPDK framework management for the NICs, and iii) the multi-thread management policy. Figure 3-34 
illustrates the main architecture of UPF-VPP and how these components are involved during packet 
processing flow. The UPF-VPP runs on top of kernel bypass technologies, described as low-level building 
blocks (i.e. netmap, DPDK, or Open Data Plane). In the case of DPDK, once the packet batches arrive in the 
user space, VPP processes them in form of vectors (depicted as (2) and (6) in Figure 3-34). Then, the vector 
processing nodes perform packet management functions like memory management or buffering. For 
instance, in the case of the UPF, the vector processing nodes will perform the N3/N6 GTP 
decapsulation/encapsulation and the forwarding to the N6/N3 interfaces (noted as (3) and (7)}). The output 
node will finally forward packets to the required Network Interface Card (NIC) interface (steps (4) and (8)).  

DPDK uses a Poll Mode Driver (PMD) that employs busy-polling to access NIC descriptors without 
 

13 https://open5gs.org/ 
14 https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp 
15 https://fd.io/technology/ 
16 https://www.dpdk.org/ 
17 https://facebook.github.io/prophet/ 

https://open5gs.org/
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp
https://fd.io/technology/
https://www.dpdk.org/
https://facebook.github.io/prophet/
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interruptions. This method eases and expedites network packet management, i.e., the retrieval, processing, 
and delivery of packets to user space applications. Also, the DPDK interface driver and abstraction modules 
are used to manage the interface on user space. Therefore, other kernel network drivers are no longer 
needed (e.g., iptables or route tables). VPP, when bypassing kernel with DPDK libraries, handles packets in 
batch, allowing packet processing acceleration. However, VPP also inherits the intensive CPU usage of PMD, 
nearly leading to full utilization. In the case of the UPF-VPP, the NIC descriptors (1) and (5) in Figure 3-34 are 
constantly being pulled by DPDK to process the incoming GTP packets in the N3 or N6 interfaces. This leads 
to full CPU usage, irrespective of the network load conditions, thus obtaining high energy consumption and 
low energy efficiency in low loaded scenarios. 

In terms of performance, the UPF-VPP implementation leveraging DPDK outperforms the results of other 
open-source solutions, such as Open5Gs [56]. In preliminary results using the experimental setup described 
in Section 3.5.218, we obtained around 35 Gbps of TCP throughput with a single-threaded UPF-VPP instance, 
compared to a maximum of 1 Gbps using Open5Gs [1]. However, this high performance comes at the cost of 
high energy consumption. Figure 3-35 depicts the performance of default governors in terms of energy 
consumption and achieved throughput. The performance governor, which selects always the maximum 
available frequency (2.7 GHz in this case), was able to reach 35 Gbps. However, even in idle mode, i.e. without 
processing GTP traffic, the energy consumption was high due to poll modem driver intensively using the CPU. 
On the other hand, the powersave mode always selected the minimum available frequency (1 GHz in this 
case), saving significant energy (~30%) in idle mode but reaching a maximum throughput of 22.6 Gbps. This 
highlights the need of a traffic-aware strategy to dynamically manage CPU frequency and optimise the 
energy efficiency of the UPF.  

 
Figure 3-34: UPF resource allocation - UPF-VPP architecture and processing flow 

 
18 UPF hosted in a Supermicro E302-9D server: Intel Xeon processor D-2123IT 4 CPUs, Base freq. 2.2 GHz, Max Turbo freq. 3GHz, Max 
power consumption 60W 
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Figure 3-35: UPF resource allocation - CPU frequency governors’ performance 

 

Figure 3-36: UPF resource allocation – Energy consumption vs number of threads (idle mode) 

The evaluated UPF-VPP implementation supports single and multi-threading working modes. In single-thread 
mode, one main thread handles packet processing and other management functions. In the case of a multi-
threading setup, the CPU cores made available during the initial configuration are managed by the VPP 
application in the user space and assigned to worker threads. These worker threads manage the NIC cards 
to perform end-to-end packet processing. For instance, in the case illustrated in Figure 3-34, two 
independent worker threads are separately managing the end-to-end packet processing of MO and MT 
packets. Since the workload in each thread can be managed by specific CPU cores, it enables the application 
of independent traffic-aware CPU policies such as frequency scaling. If more CPU cores than NICs are 
included in the initial configuration setup, more threads will be created, and each CPU core will be bound to 
a new worker thread.  

Once the worker capacity, which is measured as “average vectors per node”, goes close to the maximum 
capacity (i.e., 256 according to [57]), the RX queue of the worker starts dropping packets. Using more threads 
provides scaling capability for high-performance packet processing on the UPF-VPP, but at the same time, 
increases CPU power consumption.   

Figure 3-36 depicts how the energy scales with the number of threads in idle mode for minimum and 
maximum CPU frequencies. According to these results, we can anticipate scenarios where using more 
threads at lower frequencies will offer better energy efficiency than using fewer threads at higher 
frequencies. Note that hyperthreading is not considered since VPP and DPDK can lead to performance 
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degradation when using several logical cores due to sharing resources of the physical core like the L1 and L2 
caches [58].  

According to the components and features presented in the previous section, we can conclude that the 
default UPF-VPP DPDK configuration and operation presents the following challenges to provide high 
performance plus energy-efficiency: 

• Due to the intensive CPU usage required by the PMD, the energy consumption of each worker thread 
is very high, even when not handling any packets or any RX queue,. Besides, the workers are unable 
to dynamically control the PMD mechanism. 

• The pool of available resources is set up only in the initial configuration (i.e., fixed number of workers 
and associated cores), and it does not apply or allow any dynamic resource reallocation according to 
the measured or expected traffic load. 

• After initialization, the defined workers are associated with the available RX queues of the NICs and 
no built-in method is available to offload the packets being processed to a different core and 
releasing the one assigned by default. 

To address these challenges, Figure 3-37 schematically depicts the resource allocation model that is being 
considered, where according to the number of NICs and their incoming load of the NICs, we can determine 
the following energy-efficient strategies:  

• CPU frequency scaling: In the initial setup, a reception (RX) queue on a NIC is associated with a 
worker thread, which is then managed with a CPU. While it is not possible to modify PMD behaviour, 
which requires CPU resources in an exhaustive way, CPU p-states policies may be applied to adapt 
the frequency of the core to the incoming load in the NICs. Matching core frequency with actual 
packet processing requirements, will optimise energy-efficiency. 

• Worker/Thread reallocation: Fixed allocations of threads can lead to inefficiencies. Processing 
capacity per NIC is increased by assigning more RX queues and workers to a NIC, what also allows to 
assign additional core resources. This enables strategies such as assigning to a NIC several cores at 
low frequency instead of a single core at high frequency, which may provide additional energy 
savings. On the hand, under low traffic demands, decreasing the number of threads by allocating 
several NICs to a common worker may also enhance energy efficiency.  

Note that the combination of these two strategies will be highly relevant in real deployments, where uplink 
and downlink traffic demand is usually unbalanced. Therefore, proper thread allocation and CPU frequency 
scaling, tailored the predicted traffic demand for each NIC, will significantly enhance the overall energy 
efficiency of the system.  

 
Figure 3-37: UPF resource allocation – Allocation model 



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

91 

 
BeGREEN [SNS-JU-101097083] 

In addition to these resource allocation strategies, in case one worker or core is not needed during a specific 
interval of time, two main approaches may be applied according to the use case. On the one hand, 
thread/CPU idle mechanisms, such as the enhanced C-states C0.1 and C0.2 available in recent Intel CPU 
generations [59], may be used to hibernate both core and worker functions such as the PMD. On the other 
hand, released cores may be reallocated to other services present in the same server, for instance AI/ML 
workloads.  

In the next section, we will present an experimental characterization of these energy-efficiency strategies, 
with focus on the trade-off between performance and energy consumption. We will also validate the 
feasibility of dynamic approaches according to the current implementation of the DPDK-based UPF-VPP and 
the available tools in Linux kernels.  

 Initial evaluation 
This section presents the experimental characterization performed to study the relationship between UPF 
performance, CPU resource allocation techniques and energy consumption. First, we describe the testbed 
and the software tools being used. Then, we discuss the obtained results. 

 Experimental testbed 
The architecture of the experimental testbed is depicted in Figure 3-38 and described as follows: 

• VPP-DPDK UPF server:  The VPP-DPDK implementation of OAI’s UPF 19 is deployed as baremetal in a 
server. The CPU of the server is an Intel Xeon processor D-2123IT with 4 physical CPUs (base 
frequency 2.2 GHz, max turbo frequency 3 GHz) and a maximum power consumption of 60 Watts. 
The server has four 10 Gbps interfaces, what allows us to reach throughputs of around 20 Gbps in 
uplink and 20 Gbps in downlink. Hyperthreading was enabled in the BIOS though not used by the 
UPF implementation as recommended in [58]. Turbo frequencies were also available.  

• gNB & UE servers: These servers host the PacketRusher tool 20, which emulates the 5G gNB and the 
UE. Compared to other open-source emulation tools, PacketRusher is specially indicated for high 
performance scenarios, being able to reach 5 GB/s per UE. It requires an N2 connection to the 5GC 
Control Plane and a N3 connection to the UPF. We used Iperf3 21 in TCP mode to generate the traffic 
to and from the Application servers. 

• Open5GS Control Plane server: Open-source solution which Implements the 5GC Control Plane22. It 
allows to connect network functions from different vendors or open-source implementations 
through standard interfaces, as is the case of the VPP-DPDK UPF via N4.  

• Application servers: Host the Iperf3 servers and are connected to the UPF via the N6 interface.  

The throughput experiments were conducted using Iperf3 TCP sessions in dual-mode, i.e. generating the 
same amount of traffic in both the uplink and downlink directions.  

For the sake of comparison, all four interfaces were used during the tests, distributing the traffic equally 
among them. The reported results are based on the average of 3 to 5 experiments, though confidence 
intervals are not provided due to their negligible values. We used the tool powerstat 23  to obtain the 
consumption of the UPF server, which uses Intel’s Running Average Power Limit (RAPL) interface.  

 
19 https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp 
20 https://github.com/HewlettPackard/PacketRusher 
21 https://iperf.fr/ 
22 https://open5gs.org/ 
23 https://github.com/ColinIanKing/powerstat 

https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp
https://github.com/HewlettPackard/PacketRusher
https://iperf.fr/
https://open5gs.org/
https://github.com/ColinIanKing/powerstat
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Figure 3-38: UPF resource allocation - experimental testbed 

The option to obtain separated core and uncore power consumption was not available in our Operating 
System (OS). Thus, it is reported the total power consumption of the processor package of the server. 

 Experimental results 
The performed experiments aimed at characterising the influence of two factors on the maximum achievable 
throughput and on the consumed energy of the VPP-DPDK UPF: (i) CPU frequency and (ii) the number of 
assigned threads. Note that in the first case, we only assigned a CPU to the UPF, while the others were unused 
and configured at minimum frequency. 

CPU frequency scaling: 

As was mentioned in Section 3.5.1, the PMD being used by DPDK in order to poll NICs requires a high 
utilisation of the CPU (around 100%). This increases the energy consumption even in the cases with no traffic 
when the UPF is idle. Figure 3-39 depicts the measured consumption in idle status for different CPU 
frequencies. Note that the measured power consumption of the server before starting the UPF was 16W, i.e. 
just initiating it increased significantly the energy consumption, ranging between 60% and 120% depending 
on the CPU frequency.  

Additionally, the results highlight the impact of the turbo frequencies (i.e., frequencies higher than 2.1 GHz), 
which introduced a noticeable knee point between low and high CPU frequencies and significantly increased 
the energy consumption trend. As depicted in Figure 3-40, this causes that, with low traffic demands, low 
CPU frequencies can process incoming packets requiring of less power than higher frequencies. For instance, 
until it saturates at approximately 20 Gbps, working at 1 GHz significantly decreases the energy consumption 
compared to higher frequencies. Note that 2.7 GHz is equivalent to the performance governor.  

Results in Figure 3-40 also show that the increase of energy consumption with the throughput is steeper at 
lower CPU frequencies compared to higher frequencies, where the increase is more gradual and smoother. 
This limits the benefits of using low CPU frequencies under high throughputs. This could be caused by uncore 
power consumption, for instance due to an increase of the utilisation and misses at the L3 cache due to the 
high throughout and low CPU frequency. Cache misses force DPDK to access slower DRAM memory more 
often, which is more power-hungry. Future work will include characterizing this possible problematic.   

Figure 3-41 compares the power consumption of the Performance governor (i.e., at 2.7 GHz) with an 
adaptive strategy which selects the minimum CPU frequency able to serve the incoming traffic (from 1 GHz 
up to 1.7 GHz as show in the graphic). As previously mentioned, the Energy Savings (left y-axis) are substantial 
under low load conditions, exceeding 25%, but they gradually decrease as traffic increases. However, even 
in this case, improvements in energy savings ranging from 15% to 5% can still be achieved. Additionally, in 
real scenarios, to allow reaching higher throughputs during peak hours, the baseline UPF configuration will 
include several cores operating in performance mode. This scenario will be analysed in the next section.  
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Figure 3-39: UPF resource allocation - Power consumption in idle status (no traffic) 

 
Figure 3-40: UPF resource allocation - Power consumption and achieved throughput according to CPU frequency 

Workers/Threads scaling: 

We next evaluated the performance of the VPP-DPDK UPF when increasing the number of workers and 
threads, i.e., when increasing the number of CPUs dedicated to the UPF. Particularly, we considered a 
scenario with 2 physical CPUs, i.e., one dedicated to N3 NICs and the other one to N6 NICs, and another one 
with 4 physical CPUs, each one dedicated to an individual NIC. We also varied the CPU frequencies, using the 
same one in all the CPUs being used.  

Figure 3-42 depicts the results of 1, 2 and 4 CPUs, combined with CPU frequencies of 1, 1.9, 2.3 and 2.7 GHz 
(X-Y in the legend stands for X CPUs at Y frequency). As was expected according to the measurements based 
on idle status presented in Figure 3-36, the impact on energy consumption of increasing the number of CPUs 
is more noticeable at higher CPU frequencies.  

 
Figure 3-41: UPF resource allocation - Energy Consumption of the optimal vs performance CPU allocation  
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Figure 3-42: UPF resource allocation – Power consumption and achieved throughput according to number of CPUs 
and CPU frequency. For instance, 4-2.3 stands for 4 CPUs at 2.3 GHz 

 
Figure 3-43: UPF resource allocation – Energy Saving benefits according to proposed strategies 

Therefore, results at 1 GHz offer the best trade-off between performance and energy consumption, being 
able to provide the maximum throughput by using 2 CPUs.  

As previously mentioned, in real deployments that do not apply energy efficiency optimizations, the default 
resource allocation for the UPF typically involves activating all CPU cores and setting them to the maximum 
frequency (i.e., performance mode). This approach ensures the system can handle peak throughputs without 
the need for restarting the system but will lead to a very high energy consumption. On the other hand, by 
applying a dynamic setting of CPU frequency and of CPU-worker assignment, we could allocate the required 
resources in each period according to the incoming traffic demand. Figure 3-43 illustrates the achievable 
energy savings in our setup when considering the performance (i.e., 4-2.7 in Figure 3-36) and the optimal 
(i.e., a combination of 1-1 and 2-1 in Figure 3-36) modes. As in previous cases, the energy saving benefits are 
more relevant at lower loads, but even under high traffic demands savings can still reach approximately 30%.  

Future work will include the evaluation of these strategies according to real traffic dynamics in uplink and 
downlink directions by using the P-GW dataset from an MNO. Additionally, we will also integrate and 
evaluate traffic forecasting to enable proactive decision-making.  
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3.6 Joint orchestration of vRANs and Edge AI services 
In this section we address the problem of the joint orchestration of virtualized RANs and edge AI services. 
This problem is already introduced the previous BeGREEN D4.1 [1] and it is crucial for the development of 
energy efficient services at the edge of the network.  

In the following, we first extend the experimental characterization of the system introduced in BeGREEN 
D4.1, and then we detail the design of a Bayesian online learning algorithm to tackle the problem. In 
BeGREEN D4.3, we plan to evaluate the proposed algorithm experimentally. Specifically, we will conduct an 
analysis of convergence under stationary and dynamic network conditions, an empirical study of optimality 
and a comparison with state-of-the-art ML approaches in terms of data efficiency and adaptability to changes 
in the requirements of the system. 

 Use case 
The performance indicators and policies were already introduced in BeGREEN D4.1 [1]. We provide a 
summary as follows: 

• Performance indicators: 

o Service delay: End-to-end delay that includes the image pre-processing at the user side, its 
transmission, the processing at the server (GPU delay), and the return of the bounding boxes 
and labels. 

o Mean Average Precision (mAP): It is used to quantify the service accuracy [60].  

o Server power consumption: Power cost associated with the computational load of the service's 
requests, which is dominated by the GPU power consumption. 

o Base Station power consumption: Power consumption associated with processing the baseband 
unit in a virtualized RAN environment. 

• Policies: 

o Image resolution: This policy sets the average encoding of every image (number of pixels) which 
the service can enforce.  

o Radio Airtime: This radio policy imposes a constraint on the radio resources (duty cycle) the vBS 
allocates to the service traffic.  

o GPU speed: The server’s policy is a GPU power limit that adapts the processing speed of a GPU 
(or a pool of GPUs) in a slice to meet the adopted power constraint.  

o Radio MCS: This policy imposes a constraint on the maximum MCS eligible by the vBS to 
transport the service’s data over the air.  

In BeGREEN D4.1, we characterized the relationship between the service delay and the server power 
consumption through the image resolution and the airtime. Moreover, we also analysed the impact of the 
MCS policy, airtime and image resolution on the power consumption of the BS. Now, we extend the 
characterization to analyse the behaviour of the system as a function of other policies. 

Figure 3-44 shows the trade-off between delay and mAP for the COCO dataset images encoded with different 
resolutions. The remaining configuration policies are fixed. The findings reveal interesting and quantifiable 
trade-offs: (i) Higher-resolution images carry more pixels encoded in a larger amount of data; thus, they incur 
a higher delay due to longer transmission time over the radio interface. (ii) Lower-resolution images cause 
the service to provide lower mAP performance because they carry less information for the object detection 
engine. Specifically, we measured a 72% improvement in delay at the expense of precision reduction ranging 
between 10% to 50%. 
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Figure 3-44: vRAN and Edge - Mean average precision (mAP) vs. service delay for images with different resolutions. 

Figure 3-45 (top) depicts the service delay and the server's power consumption for several image resolution 
configurations. We now fix the airtime to 100% and vary the policy allocating computing resources. A higher 
amount of computing resources increases the server's power consumption, as we are relaxing the power 
limit imposed to the GPU. We observe that low-res images contribute to increasing the server's power 
consumption as the rate of requests also grows. However, it is interesting to note that higher-res images 
ease the work on the GPU, as evidenced by Figure 3-45 (bottom), which shows the delay associated with the 
GPU tasks only. All in all, despite this improvement in the GPU delay, the corresponding increase in 
transmission delay when using higher-res images dominates. It is important to observe that, while this is true 
in our experimental testbed, it may well be different for diverse deployments (e.g., a more energy-efficient 
GPU, or a higher-bandwidth RAN). This motivates the need for learning algorithms that adapt to the different 
deployments.  

The trade-off presented before between service delay and the server power consumption, certainly appears 
for other performance metrics, such as the mAP. To assess this, Figure 3-46 shows the mAP achieved by the 
service as a function of the server's power consumption for various image resolutions. The findings confirm 
the service cost depends on the mAP.  

 
Figure 3-45: vRAN and Edge - Delay vs. server's power consumption for images with different resolutions and GPU 

policies. 
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Figure 3-46: vRAN and Edge - Mean average precision vs. server's power consumption for images with different 

resolutions. The radio and computing resources are allocated to minimize the delay. 

Importantly, however, the relationship with mAP is substantially different from that with the service delay. 
In this case, higher mAP performance actually requires less server power consumption. The reason lies in the 
fact that higher-res images (which render higher mAP) facilitate object detection and hence require less 
computation, see Figure 3-46 (bottom). 

As a conclusion of our experimental characterization, we would like to highlight that our system consists of 
a large number of intertwined parameters with non-trivial effects on the performance and energy 
consumption. As a consequence, we resort to model-free machine learning approaches to design a controller 
that adapts autonomously to context changes and the vBS and server hosting platforms. We provide a 
summary of the experimental findings from this section in Table 3-10. 

Table 3-10: vRAN and Edge - Summary of the Experimental Findings 
Control Policy Impact on the Performance Indicator 
Image Resolution Higher image resolution implies higher delay, better mAP, and lower GPU delay. 
Airtime           Higher airtime implies lower delay, and higher server and BS consumed power. 
GPU Speed         Higher GPU speed implies higher server consumed power and lower delay.  
MCS               Higher MCS reduces the consumed power at the vBS with low traffic or the opposite 

with high traffic. 

 Solution design  
In this section, we design an online learning algorithm that solves the problem defined in D4.1, which is 
formulated as a contextual bandit. Most of the existing contextual bandit algorithms assume a linear 
relationship between the contexts-control space and the associated reward [61]; or assume a certain 
structure in the reward function [62]. However, as our experimental characterization reveal, our 
performance metrics have a non-linear and unknown curvature, but we do observe a high correlation with 
the control policies. That is, a small change in one of the policies (e.g., image resolution) will produce a small 
change in delay and power. This allows us to get information about unobserved context-control points via 
nearby points, hence reducing the exploration time. 

Based on the above points, we propose a Bayesian online learning method that models the cost and 
constraint functions as samples of Gaussian Processes (GPs) over the joint context-control space. This non-
parametric estimator deals with the aforementioned non-linearities and correlations, and quantifies the 
function estimation uncertainty, addressing effectively the exploration vs. exploitation trade-off.  

Function approximator:  

In order to estimate the cost and constraint functions we use GPs, which consist of a collection of random 
variables that follow joint Gaussian distributions [63]. Let 𝑧𝑧 ∈ 𝒵𝒵 = Ω × 𝒳𝒳 denote a context-control pair. We 
model each of the unknown functions as a sample from 𝐺𝐺𝐺𝐺�μ(𝑧𝑧), 𝑘𝑘(𝑧𝑧, 𝑧𝑧′)�, where μ(𝑧𝑧) is its mean function 
and 𝑘𝑘(𝑧𝑧, 𝑧𝑧′) denotes its kernel or covariance function. Without loss of generality, we assume 𝜇𝜇 =  0 and 
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𝑘𝑘(𝑧𝑧, 𝑧𝑧) < 1, which we refer to as the prior distribution, not conditioned on data. Given the prior distribution 
and a set of observations, the posterior distribution can be computed using closed-form formulas. 

The sets of observations of the cost and constraint functions at points 𝑍𝑍𝑇𝑇 = [𝑧𝑧1, … , 𝑧𝑧𝑇𝑇] up to time period 𝑇𝑇 
are denoted by 𝑦𝑦𝑇𝑇

(0) = [𝑢𝑢1, … ,𝑢𝑢𝑇𝑇] , 𝑦𝑦𝑇𝑇
(1) = [𝑑𝑑1, … ,𝑑𝑑𝑇𝑇] , 𝑦𝑦𝑇𝑇

(2) = [𝜌𝜌1, … ,𝜌𝜌𝑇𝑇] , respectively, assuming i.i.d. 
Gaussian noise, ∼ 𝑁𝑁�0, ζ(i)

2 �). The posterior distribution of these functions follows a GP distribution with 
mean and covariance: 

μ𝑇𝑇
(i)(𝑧𝑧) = 𝑘𝑘𝑇𝑇

(i)(𝑧𝑧)⊤ �𝐾𝐾𝑇𝑇
(i) + ζ(i)

2 1𝑇𝑇�
−1
𝑦𝑦𝑇𝑇

(i)  (1) 

𝑘𝑘𝑇𝑇
(i)(𝑧𝑧, 𝑧𝑧′) = 𝑘𝑘(i)(𝑧𝑧, 𝑧𝑧′) − 𝑘𝑘𝑇𝑇

(i)(𝑧𝑧)⊤ �𝐾𝐾𝑇𝑇
(i) + ζ(i)

2 1𝑇𝑇�
−1
𝑘𝑘𝑇𝑇

(i)(𝑧𝑧′) (2) 

 where  𝑘𝑘𝑇𝑇
(𝑖𝑖)(𝑧𝑧) = �𝑘𝑘(𝑖𝑖)(𝑧𝑧1, 𝑧𝑧), … , 𝑘𝑘(𝑖𝑖)(𝑧𝑧𝑇𝑇 , 𝑧𝑧)�⊤, 𝐾𝐾𝑇𝑇

(𝑖𝑖)(𝑧𝑧) is a  kernel matrix defined as�𝑘𝑘(𝑖𝑖)(𝑧𝑧, 𝑧𝑧′)�𝑧𝑧,𝑧𝑧′∈𝑍𝑍𝑇𝑇
, 𝐼𝐼𝑇𝑇 is 

the 𝑇𝑇-dimension identity matrix, and ζ(i)
2  the variance of noise in observations. Index 𝑖𝑖 denotes the objective 

function, with 𝑖𝑖 = 0 for the cost function, 𝑖𝑖 = 1 for the delay, and 𝑖𝑖 = 2 for the mAP. The distribution of 
unobserved values of 𝑧𝑧 ∈ 𝒵𝒵  for function 𝑖𝑖  is computed from the prior distribution, vector 𝑍𝑍𝑇𝑇  and the 
observed values 𝑦𝑦𝑇𝑇

(i) using the equations above. 

Kernel selection: 

The kernel shapes the GP's prior and posterior distributions, and thus encodes the correlation of the function 
values for every pair of context-control points. In other words, the kernel characterizes the smoothness of 
the functions [64]. The properties of the kernel should be thoroughly selected for each specific application 
and the functions to be learned.  

We observe in our experimental characterization that the performance indicator functions exhibit different 
smoothness for each dimension (control policy). In order to approximate these functions accurately, we 
select our kernel function satisfying two properties: stationarity and anisotropicity. 

This means that 𝑘𝑘(𝑧𝑧, 𝑧𝑧′) is invariant to translations in 𝒵𝒵  but not invariant to rotations in 𝒵𝒵 . The kernel 

smoothness for each dimension of function i is encoded in the length-scale vector ℒ (𝑖𝑖) = �𝑙𝑙1
(𝑖𝑖), … , 𝑙𝑙𝑁𝑁

(𝑖𝑖)�, where 

𝑁𝑁 is the number of dimensions of 𝒵𝒵. The distance between two points based on the length-scale vector is: 

𝑑𝑑(𝑖𝑖)(𝑧𝑧, 𝑧𝑧′) = �(𝑧𝑧 − 𝑧𝑧′)⊤(𝐿𝐿(𝑖𝑖))−2(𝑧𝑧 − 𝑧𝑧′), 

where 𝐿𝐿(𝑖𝑖) = diag�ℒ(𝑖𝑖)� is a diagonal matrix of the length-scale vector. In order to satisfy the properties 
stated above, we select the Matérn kernel on its anisotropic version [63]. Moreover, following standard 
practice, we particularize it with parameter ν = 3

2
 (details in [63]), indicating that the function is at least once 

differentiable. Thus, the expression of the kernel can be particularized as follows: 

𝑘𝑘(𝑖𝑖)(𝑧𝑧, 𝑧𝑧′) = �1 + √3𝑑𝑑(𝑖𝑖)(𝑧𝑧, 𝑧𝑧′)� exp �−√3𝑑𝑑(𝑖𝑖)(𝑧𝑧, 𝑧𝑧′)� 

Note that although we are using the same kernel for all cost and constraint functions, their hyperparameters 
differ and depend on each function's shape. In fact, ℒ(𝑖𝑖) and noise variance ζ(i)

2  should be optimized for each 
function 𝑖𝑖 before running the algorithm, by maximizing the likelihood estimation over prior data. During 
execution, the hyperparameters remain constant, since otherwise (optimized with newly acquired data) it is 
not guaranteed the GPs' confidence interval will cover the actual function within, causing the optimization 
to fall into poor local optima [65]. 

Safe set: 

It is crucial to identify first which controls satisfy the constraints, which, however, depends also on the 
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context. For instance, when the user's channel quality decreases (the context changes), the user uses a lower 
MCS, which increases the transmission time hence increasing the service delay. Therefore, the controls that 
are suitable for high channel quality may not meet the delay constraint with low channel quality. We define 
the safe set as the set of policies that satisfy all the constraints for a given context 𝑐𝑐: 

𝑆𝑆(𝑐𝑐)  =  { 𝑥𝑥 ∈  𝒳𝒳 | 𝑑𝑑(𝑐𝑐, 𝑥𝑥)  ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  ∧   𝜌𝜌(𝑐𝑐, 𝑥𝑥)  ≥ 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 }.  

Nevertheless, the computation of the safe set is challenging. Firstly, the observations of the performance 
metrics are noisy due to the stochastic nature of the system (e.g., noise in the measurements, random 
variations in the performance), as we observed in the experimental characterization. And secondly, the 
number of controls |𝒳𝒳| is very large in practice, making it unattainable to explore all possible configurations, 
for all possible contexts.  For these reasons, we use GPs to compute an estimation of the safe set: 

𝑆𝑆𝑡𝑡  =  𝑆𝑆0  ∪ { 𝑥𝑥 ∈  𝒳𝒳 | 𝜇𝜇𝑡𝑡−1
(1) (𝑐𝑐𝑡𝑡 , 𝑥𝑥)  +  𝛽𝛽𝜎𝜎𝑡𝑡−1

(1) (𝑐𝑐𝑡𝑡 , 𝑥𝑥) ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  ∧   𝜇𝜇𝑡𝑡−1
(2) (𝑐𝑐𝑡𝑡 , 𝑥𝑥)  −  𝛽𝛽𝜎𝜎𝑡𝑡−1

(2) (𝑐𝑐𝑡𝑡 , 𝑥𝑥)  ≥ 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 }.  

where �𝜎𝜎𝑡𝑡
(𝑖𝑖)(𝑧𝑧)�

2
= 𝑘𝑘(𝑖𝑖)(𝑧𝑧, 𝑧𝑧) and  𝛽𝛽 is a weight parameter. Note that the safe set changes over time for 

two reasons. First, it is a function of the context and, therefore, when the context changes, the set of control 
policies meeting the constraints varies. Second, as we get more observations of the constraint functions their 
estimated values and uncertainties also change, allowing us to compute the safe set more precisely. In other 
words, at each period 𝑡𝑡, point 𝑧𝑧𝑡𝑡 is observed and vectors 𝑍𝑍𝑡𝑡 and 𝑦𝑦𝑇𝑇

(𝑖𝑖) ∀𝑖𝑖  are updated. Due to their correlation, 
the posterior distribution of points near 𝑧𝑧𝑡𝑡 will be updated, hence affecting which controls will be included 
in the safe set. 

Acquisition function: 

It indicates, at each time period 𝑡𝑡, which control 𝑥𝑥𝑡𝑡  shall be used in the system given context 𝑐𝑐𝑡𝑡. This task is 
crucial for the convergence of the algorithm and needs to interleave an exploration process in order to 
expand the safe set while seeking a safe control with high performance. Many previous works have proposed 
acquisition functions for constrained Bayesian optimization [66] [67] [68], but they do not consider contexts. 
To the best of our knowledge, SafeOpt [67] is the only work using contexts. However, while SafeOpt provides 
theoretical performance guarantees, we found in our experiments that its acquisition function has overly 
slow convergence; an issue that has been reported in other works as well, e.g., [69]. Therefore, we expand 
this approach by using the contextual Lower Confidence Bound (LCB) proposed in [70] as an acquisition 
function, but constrained to safe set, i.e.: 

𝑥𝑥𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥∈𝑆𝑆𝑡𝑡  𝜇𝜇𝑡𝑡−1
(0) (c𝑡𝑡 , 𝑥𝑥) + �β𝑡𝑡𝜎𝜎𝑡𝑡−1

(0) (c𝑡𝑡 , 𝑥𝑥) 

Algorithm 3-6 summarizes the whole workflow our solution. At the beginning of the time period 𝑡𝑡, the 
context 𝑐𝑐𝑡𝑡 is observed (line 4). Based on the observed context 𝑐𝑐𝑡𝑡 and the vectors 𝑍𝑍𝑡𝑡−1 and 𝑦𝑦𝑡𝑡−1

(𝑖𝑖)  ∀ 𝑖𝑖 from the 
previous time period, the posterior distribution of all the functions is computed using eq. (1)-(2) (line 5). Note 
that when we do not have observations (i.e., 𝑍𝑍0  and 𝑦𝑦0

(𝑖𝑖) are empty sets, ∀ 𝑖𝑖) the posterior distribution is 
equal to the prior distribution. Using the expectation and uncertainty of the constraint functions and the 
equation to estimate the safeset, the safe set 𝑆𝑆𝑡𝑡 is built (line 6).  

Algorithm 3-6: vRAN and Edge – Solution Workflow 
1   Inputs: Control space 𝒳𝒳, kernel 𝑘𝑘, β, 𝛿𝛿1, 𝛿𝛿2, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  

2   Initialize 𝑦𝑦0
(𝑖𝑖) ∀𝑖𝑖 𝑍𝑍0 as empty sets. 

3   For 𝑡𝑡 =  1,2, … do 

4         Observe context 𝑐𝑐𝑡𝑡 

5         Compute 𝜇𝜇𝑡𝑡−1
(𝑖𝑖) , 𝜎𝜎𝑡𝑡−1

(𝑖𝑖)  ∀𝑖𝑖, based on Eq. (1) and (2) 
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6          Estimate the safe set of actions    𝑆𝑆𝑡𝑡  =  𝑆𝑆0  ∪ { 𝑥𝑥 ∈  𝒳𝒳 | 𝜇𝜇𝑡𝑡−1
(1) (𝑐𝑐𝑡𝑡 , 𝑥𝑥)  +  𝛽𝛽𝜎𝜎𝑡𝑡−1

(1) (𝑐𝑐𝑡𝑡 , 𝑥𝑥) ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  ∧   𝜇𝜇𝑡𝑡−1
(2) (𝑐𝑐𝑡𝑡 , 𝑥𝑥)  −

              𝛽𝛽𝜎𝜎𝑡𝑡−1
(2) (𝑐𝑐𝑡𝑡 , 𝑥𝑥)  ≥ 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 } 

7        Select the control policy 𝑥𝑥𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥∈𝑆𝑆𝑡𝑡  𝜇𝜇𝑡𝑡−1
(0) (ω𝑡𝑡 , 𝑥𝑥) + �β𝑡𝑡𝜎𝜎𝑡𝑡−1

(0) (ω𝑡𝑡 , 𝑥𝑥) 

8        Observe 𝑑𝑑𝑡𝑡(𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡), 𝜌𝜌𝑡𝑡(𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡), 𝑝𝑝𝑡𝑡𝑠𝑠(𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡), and 𝑝𝑝𝑡𝑡𝑏𝑏(𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡) at the end of decision period 𝑡𝑡 

9        Compute the cost 𝑢𝑢𝑡𝑡(𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡) = 𝛿𝛿1𝑝𝑝𝑡𝑡𝑠𝑠(𝑐𝑐, 𝑥𝑥) + 𝛿𝛿2𝑝𝑝𝑡𝑡𝑏𝑏(𝑐𝑐, 𝑥𝑥) 

10      Update 𝑍𝑍𝑡𝑡 ← 𝑍𝑍𝑡𝑡−1 ∪ 𝑧𝑧𝑡𝑡 ≔ [𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡] 

11      Update 𝑦𝑦𝑡𝑡
(0) ← 𝑦𝑦𝑡𝑡−1 ∪ 𝑢𝑢𝑡𝑡(ω𝑡𝑡 , 𝑥𝑥𝑡𝑡) 

12      Update 𝑦𝑦𝑡𝑡
(1) ← 𝑦𝑦𝑡𝑡−1 ∪ 𝑑𝑑𝑡𝑡(ω𝑡𝑡 , 𝑥𝑥𝑡𝑡) 

13      Update 𝑦𝑦𝑡𝑡
(2) ← 𝑦𝑦𝑡𝑡−1 ∪ 𝜌𝜌𝑡𝑡(ω𝑡𝑡 , 𝑥𝑥𝑡𝑡) 

14   End for 

 

The control 𝑥𝑥𝑡𝑡  is selected from the safe set 𝑆𝑆𝑡𝑡 based on the posterior distribution of the cost function and 
the acquisition function (line 7). At the end of the time period 𝑡𝑡, all the performance indicators are observed. 
Then, the cost function is computed. Finally, the new context-control pair 𝑧𝑧𝑡𝑡, the value of the cost function 
𝑢𝑢𝑡𝑡(𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡) and the value of the constraint functions (𝑑𝑑𝑡𝑡(𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡) and 𝑝𝑝𝑡𝑡(𝑐𝑐𝑡𝑡 , 𝑥𝑥𝑡𝑡)) are added to their respective 
vectors to generate 𝑍𝑍𝑡𝑡 and 𝑦𝑦𝑡𝑡

(𝑖𝑖) ∀𝑖𝑖 (lines 10-13). 

Note that our solution does not expand explicitly the safe set like in other works such as [67] [66]. These 
works propose an explicit expansion of the safe set by intentionally exploring controls in the boundary. The 
objective is to converge to the true safe set and therefore to reach the optimal safe control. However, we 
found that our acquisition function can both minimize the cost function and expand the safe set. 

The reason is that control policies with lower values of power consumption are usually in the boundary of 
the constraint (e.g., they are associated with higher service delay). Hence, when the acquisition function 
explores lower power controls it is indirectly exploring the boundaries of the constraint, reducing its 
uncertainty and thus expanding the safe set. In other words, the acquisition function exploits the problem 
structure to efficiently expand the safe set. 

Practical Issues: 

 It is interesting to note that, if the performance bounds (constraints) are very tight and the problem is 
infeasible, the safe set will converge to the initial safe set, that is, lim

𝑡𝑡→∞
𝑆𝑆𝑡𝑡 = 𝑆𝑆0 (since 𝑆𝑆0 is always included in 

𝑆𝑆𝑡𝑡, Algorithm 3-6, line 5). This might happen only for certain contexts, e.g., for very low channel quality. In 
any case, our solution will select control policies from the initial safe set 𝑆𝑆0, which are intentionally selected 
to be the ones with the lowest delay, the highest mAP and, therefore, the highest consumed power. On top 
of that, the proposed algorithm is robust to changes in the constraint settings, and hence can adapt if, for 
example, the operator decides to relax them during the system runtime in order to avoid such infeasibilities. 
We demonstrate this in the next section. Finally, it is worth mentioning that the computation of the posterior 
distribution in eq. (1)-(2) is 𝑂𝑂(𝑁𝑁3). However, we found in our experiments that this does not introduce any 
delay since we have a wide enough time window to update the control policy, according to O-RAN 
specifications.  

3.7 Intelligence Plane validation 
In this section, we report the initial validation of the Intelligence Plane, which is based on the demonstration 
performed at the 2024 EuCNC & 6G Summit (EuCNC’24). The main objective of this validation was to assess 
the baseline architecture and operations of the Intelligence Plane, focusing on two key components: the AI 
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Engine and the Non-RT RIC. In particular, we considered the energy-efficient 5G carrier on/off switching use 
case presented in Section 3.3, developing and integrating the required ML models and AIA rApps.  

 Solution design and use case 
As introduced in Section 2, the AI Engine, which leverages MLOps framework, hosts the BeGREEN ML models, 
whose outputs are exposed to control rApps through the AIA rApps. In this initial validation, we considered 
the exposure of two ML models, 5G sector energy and load predictor introduced in Section 3.3.2, and the 
Energy Score function presented in Section. Each of the models/functions were served through specific real-
time pipelines of MLRun using the Nuclio serverless frameworks. At the Non-RT RIC domain, the specific AIA 
rApps were deployed and registered as data producers using the OSC’s ICS component, which implements 
the R1 interface. Finally, the control rApp subscribed to the outputs of these functions and used them to 
drive the decisions of the on/off switching control loop. In the demonstration performed at the EuCNC’24, 
we exposed the outputs from the functions hosted in MLRun through a Prometheus exporter embedded in 
the control rApp, visualizing it in a Grafana dashboard. Future work is to generate the A1 Energy Saving (ES) 
policy, according to the definition presented in 2.1.2, and send it to the Near-RT RIC and the associated 
Energy Saving xApp. In addition, we will also incorporate RAN telemetry producer rApps processing and 
exposing online data obtained from the RAN; in this demo, this data was obtained from the offline dataset 
presented in section 3.3.1. 

Figure 3-47 illustrates the components and interfaces involved in this validation.  

 Initial evaluation 
This subsection presents the initial validation of the Intelligence Plane according to the abovementioned use 
case. The validation is mainly reported in the form of screenshots. Interested readers can also refer to the 
published video showcasing the demonstration 24.  

The Non-RT RIC was implemented as a Kubernetes cluster in an Intel NUC9i7QNX with the following specs: 
i7-9750H CPU, 64 GB RAM, and 1 TB SSD. The AI Engine was deployed in an Intel NUC10i7FNH with the 
following specs: i7-10710U CPU, 64 GB RAM, and 1 TB SSD.  

 
Figure 3-47: Intelligence Plane - EUCNC'24 demo and initial validation 

 
24 https://youtu.be/_N0JY0Sepgc?si=5cdNPETnWiqZtvHK 
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Figure 3-48: Intelligence Plane - BeGREEN SMO and Non-RT RIC REST API - initial validation 

 
Figure 3-49: Intelligence Plane - Pods active in the Non-RT RIC k8s cluster during validation 

 Non-RT RIC functions 
Non-RT RIC components, such as the ICS and the Apps, are deployed as pods and services in a Kubernetes 
cluster. In this validation, the focus was on the management through the SMO/Non-RT RIC REST API and the 
ICS component of the data types and the associated producer and consumer rApps. Figure 3-48 shows the 
main endpoints of the Non-RT RIC API, while the ICS API definition can be found in the OCS online 
documentation25.  As future work, we plan to integrate and validate the management of A1 policies and the 
communication through A1 with the Near-RT RIC interface.   

First, the REST API of the SMO allows to manage the lifecycle of the rApps, through POST (deploy) and DELETE 
(undeploy) methods. During deployment, the docker images of the rApps are retrieved from a registry and 
instantiated as pods according to the specified environment variables.  

 
25 https://docs.o-ran-sc.org/projects/o-ran-sc-nonrtric-plt-informationcoordinatorservice/en/latest/ics-api.html 

https://docs.o-ran-sc.org/projects/o-ran-sc-nonrtric-plt-informationcoordinatorservice/en/latest/ics-api.html
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Figure 3-50: Intelligence Plane - ICS/R1 status during validation 

In addition, an associated Kubernetes service is created to facilitate communication between producers, 
consumers, and the ICS. Figure 3-49 illustrates the active pods during the validation of the use case.  

As detailed in Section 2.1.2, OSC’s ICS works as in implementation of the DME functions of the R1 interface. 
Through its API, it can be obtained the number of active producers, information or data types, and jobs or 
subscriptions, as illustrated in Figure 3-50. 

Information types are used to identify the data that is generated by the producer rApps and consumed by 
the consumer rApps. The Non-RT RIC API implements POST, GET, and DELETE methods to manage them. The 
POST method allows to define the required information to generate the data (“job_definition”) and the 
output that will be generated (“job_data”), following the model that was illustrated in 2.1. Note that once 
one or more producers are associated with a specific information type, this type cannot be deleted before 
the producers get undeployed. As an example, Figure 3-51 depicts the created information types defining 
the cell load predictor (top) and the energy score (bottom). As an example, Figure 3-51 depicts the created 
information types defining the cell load predictor (top) and the energy score (bottom).  

Figure 3-52 depicts the workflow followed for the registration of the required information types for the ML 
models and the energy score.  

 

 
Figure 3-51: Intelligence Plane - Example of information type definition 
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Figure 3-52: Intelligence Plane– Workflow for definition of information types for ML models 

 AIA rApps 
AIA rApps mainly act as data producers, exposing the real-time pipelines of MLRun to the control rApps. In 
the case of ML models, MLRun also allows the creation of training and monitoring pipelines or the analysis 
of feature importance; the incorporation of these operations will be explored in BeGREEN D4.3. Nevertheless, 
pre-trained models or other non-ML functions can be easily incorporated into the framework and served 
through Nuclio. Figure 3-53 shows the ML functions view of MLRun which lists some of the models and 
functions being validated.  

The command column shows the IP and port where the real-time function will be exposed and that will be 
triggered by the AIA rApp to get its outputs. Figure 3-54 shows how these functions are listed in the Nuclio 
framework.  

 
Figure 3-53: Intelligence Plane - MLRun: ML functions view 

Non-RT RIC / SMO

Developer/Operator

Developer/Operator

SMO API

SMO API

ICS/R1 DME

ICS/R1 DME

New Info type: "cell energy predictor",
(job definition, job data)

New Info type: "cell energy predictor",
(job definition, job data)

New Info type: "cell load predictor",
(job definition, job data)

New Info type: "cell load predictor",
(job definition, job data)

New Info type: "cell energy score",
(job definition, job data)

New Info type: "cell energy score",
(job definition, job data)
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Figure 3-54: Intelligence Plane - Nuclio: Real-time functions view 

 
Figure 3-55: Intelligence Plane - Energy Predictor AIA rApp deployment 

 
Figure 3-56: Intelligence Plane - Energy Predictor AIA rApp  ICS registration 

AIA rApps are deployed using the POST method of the Non-RT RIC, as shown in Figure 3-55 for the case of 
the Energy Predictor. Note that the serving endpoint of the ML model (or Nuclio function) is passed as an 
environmental variable, allowing to reuse the AIA rApp in case a different serving endpoint is available (e.g., 
a new model offering better accuracy).  

Once deployed, the AIA rApp interfaces the ICS to register itself as producer of the associated information 
type, specifying the required endpoints for job creating and supervision as shown in Figure 3-56.  

Then, the ICS/R1 will use the “info_job_callback_url” to register new jobs according to consumer subscription 
demands (past or new requests).  
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Figure 3-57: Intelligence Plane - Registration of a new job in the Load Predictor AIA rApp 

 
Figure 3-58: Intelligence Plane - Load Predictor AIA rApp – Data delivery 

 

Figure 3-59: Intelligence Plane – Workflow for the deployment of AIA rApps 

Figure 3-57 depicts an example of the automated job registration in the case of the Load Predictor AIA rApp, 
obtaining the required parameters for the job creation as defined in the “job_definition” field of the 
information type (see Figure 3-51) and endpoint of the consumer rApp for the data delivery.  

According to this information, the AIA rApp starts delivering the data to the consumer as obtained from the 
serving endpoint in the MLRun/Nuclio and the data delivery format specified in the “job_data” field of the 
information type (see Figure 3-51). In the case of the initial validation scenario, the input data required by 
the models (e.g., last load value of the cell or number of active UEs) was obtained from a datalake storing 
the offline MNO dataset. Future work will include the online exposure of these KPIs through a RAN Telemetry 
rApp. Figure 3-58 shows an example of data delivery in the case of the Load Predictor AIA rApp, which 
includes the cell id, the predicted value, and the accuracy of the prediction or model.  

Figure 3-59 depicts the workflow required to deploy the AIA rApps and register them as data producers 
through the ICS/R1 interface.  

 Control rApp 
The control rApps are also deployed through the POST method in the SMO. In the case of the rApp being 
used for the initial validation of the Intelligence Plane, shown in Figure 3-60, we specified as environment 
variables the information required by the different information types to define the job (i.e., cell id and period).  

Once deployed, the Control rApp creates the different jobs through the ICS, which interfaces with the 
required producers as introduced in Section 3.7.1. Note that in case a producer is not available when creating 
the job, the ICS will store this request and create the subscription once available. Figure 3-61 depicts the 
process of job generation done by the validated Control rApp, while Figure 3-62 illustrates the created job in 
the case of the energy cell prediction information type.  

Non-RT RIC / SMO

Developer/Operator

Developer/Operator

SMO API

SMO API

CEP AIA rApp

CEP AIA rApp

CLP AIA rApp

CLP AIA rApp

CES AIA rApp

CES AIA rApp

ICS/R1 DME

ICS/R1 DME

Deploy Cell Energy Predictor AIA rApp,
(CEP info type, MLRun callback)

New data producer,
(CEP info type, producer callbacks)

Deploy Cell Load Predictor AIA rApp,
(CLP info type, MLRun callback)

New data producer,
(CLP info type, producer callbacks)

Deploy Cell Energy Score AIA rApp,
(CES info type, MLRun callback)

New data producer,
(CES info type, producer callbacks)
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Figure 3-60: Intelligence Plane - Control rApp deployment 

 
Figure 3-61: Intelligence Plane - Control rApp jobs generation 

 
Figure 3-62: Intelligence Plane - Control rApp – job information 

Finally, as was presented in Section 3.7.1 and illustrated in Figure 3-63, the AIA rApps start generating and 
delivering the data according to the job definition and the job data format.  

As abovementioned, in the case of this initial validation, the control rApp just exposed the predictions and 
accuracy of the models, plus the energy score, through the Prometheus and Grafana frameworks, as shown 
in Figure 3-64. The graphs show the evolution of the data and the predictors during a week, depicting every 
5 seconds (i.e., job period) a value related to a real 15-minute measurement (i.e., dataset granularity).  

Finally, Figure 3-65 depicts the workflow required to deploy the control rApp and register it as data consumer, 
and the generated non-RT control-loop with the input data obtained from the ML models through the AIA 
rApps.  
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Figure 3-63: Intelligence Plane - Control rApp - data obtention 

 
Figure 3-64: Intelligence Plane - - EUCNC'24 demonstration: Predictors view 

 
Figure 3-65: Intelligence Plane – Workflow for the deployment of control rApp and non-RT control-loop 
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ICS/R1 DME

CEP

CEP

CLP

CLP

CES

CES

Deploy Consumer rApp

New data consumer (CEP info type, job definition, delivery endpoint)
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 Initial benchmark of the Intelligence Plane 
This section reports an initial benchmark of the capabilities of the Intelligence Plane to provide data to the 
control rApps with a non-RT granularity (i.e., greater than 1 second). Starting from the previous use case, i.e. 
a control rApp and three available AIA rApps deployed in the Non-RT RIC, we evaluated the variation of the 
excess delay according to the number of consumers, the number of jobs (i.e., the number of simultaneous 
subscriptions of the consumer rApp) and the interval required by the control rApp to get all the predictions 
(i.e., the period of the control-loop). We calculated the excess delay as the difference between the required 
period and the measured period. During the evaluation, a new instance of the control rApp was deployed 
every 60 seconds until we reached the maximum number of consumers (i.e., 45, as shown in Figure 3-66 and 
Figure 3-67).  

We initially compared the results of having a single job versus three simultaneous jobs per control rApp, 
respectively labelled as 1-X and 3-X in Figure 3-66. To identify the source of delays, we also compared cases 
where the AIA rApps triggered the inference of the ML models in the AI Engine (denoted as 1-1 and 3-1) with 
cases where the AIA rApps just send a random value (denoted as 1-0 and 3-0). Results shown in Figure 3-66 
show that for a single job, the excess delay was maintained under 1 second during the whole evaluation, 
although it started to increase linearly after reaching approximately 30 consumers. In the case of 3 
simultaneous jobs per consumer, where we measured the delay needed until the consumer obtained a new 
measurement from each job, the excess delay started early to increase linearly, around 15 consumers. This 
led to the impossibility of obtaining measurements according to the required interval of one second. 
According to the results without requesting the AI Engine, denoted as 1-0 and 3-0 in the figure, which didn’t 
experience this linear increase, we can conclude that the excess delay was indeed caused by congestion in 
the AI Engine endpoints due to too many requests per second.  

Nevertheless, we also evaluated the experienced excess delay in the case of 3 jobs when increasing the 
interval or control-loop period of the consumers. As shown in Figure 3-67, higher intervals alleviated the 
congestion of the AI rApps caused by the communication with the AI Engine. For instance, with a period of 5 
seconds, the delay increase with the number of consumers was almost imperceptible. Note that this period 
will be enough for the vast majority of non-RT control-loops, since they are usually designed according to 
periods of tens of seconds or minutes.  

Finally, note that in this initial validation the AI Engine was deployed in a single server (Intel NUC); therefore, 
in an operational deployment with the AI Engine Kubernetes cluster involving multiple nodes, the serverless 
operation of Nuclio will prevent the experienced delay by applying horizontal pod scaling strategies. We will 
evaluate this approach in following validations during the project.  

 
Figure 3-66: Intelligence Plane - Jobs latency with an increasing number of consumers and fixed interval 
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Figure 3-67: Intelligence Plane - ML-based jobs latency with an increasing number of consumers and fixed interval 

3.8 Summary of Chapter 3 
This section provides a summary of the presented uses cases (Table 3-11) and the associated AI/ML-Assisted 
Procedures to enhance energy efficiency (Table 3-12).  

Table 3-11: Summary of Use Cases 

Use Case 
Main Objective 
and Targeted 
KPIs 

AI/ML-Assisted 
Procedures Baseline Scenario 

Results of the Initial 
Validation  

Dimensionality 
Reduction 

To reduce data 
volume and CPU 
cycles in training 
predictive models 

Supervised 
learning XGBoost 
Regressor 

Assessing when a 
model with less 
features can be used 
without losing 
significant accuracy. 

Data volume and 
processing 
minimization in 
specific retraining 
scenarios. 

Computing Resource 
Allocation for vRAN 

Prediction of the 
computing 
resources needed 
by the vRAN with 
the objective of 
reducing energy 
consumption. 

Reinforcement 
learning. 
Specifically, the 
formulation is 
customized for 
this specific use 
case as a 
contextual bandit 
problem. 

We compare against 
the optimal 
configuration of the 
system, (exhaustive 
search in the 
solution space) and 
SoTA benchmarks in 
the literature. 

This deliverable 
provides an 
exhaustive 
experimental 
evaluation of the 
proposed solution. 
We evaluate the 
convergence, 
inference time, and 
the performance 
w.r.t. SoTA 
benchmarks and 
realistic traffic traces. 
We measured a 17% 
of computing 
resource savings in 
realistic scenarios.  

Energy-Efficient 5G 
Carrier on/off Switching 

Reduce energy 
consumption (5G 
carriers) and 
increase energy 
efficiency (4G 
carriers) without 
impacting QoS 
(average UE rate). 
  

Load and energy 
predictors based 
on XGBoost 
Regressor. 
Logistic-Regressor 
classifier to drive 
on/off decision.  

Measured energy 
consumption of an 
actual network 
according to MNO’s 
dataset.   

Restricted to a high-
loaded site during a 
week. Up to 200 kWh 
of energy savings 
during a week (off 
~50% of the time). 
Impact on QoS not 
evaluated.  



D4.2 – Initial Evaluation of BeGREEN O-RAN Intelligence Plane, and AI/ML Algorithms 

111 

 
BeGREEN [SNS-JU-101097083] 

Use Case 
Main Objective 
and Targeted 
KPIs 

AI/ML-Assisted 
Procedures Baseline Scenario 

Results of the Initial 
Validation  

Coverage Hole 
Detection and Relay 
Placement 

Identification of 
geographical 
regions with high 
traffic demands 
and poor 
propagation 
conditions (e.g. 
low RSRP). These 
regions may be 
addressed by 
energy efficient 
solutions based 
on the 
deployment of 
relays.  

Unsupervised 
learning 
algorithms. In 
particular, a 
clustering 
algorithm based 
on DBSCAN is 
proposed to 
group 
geographical 
locations with 
problems in 
different clusters. 

The coverage hole 
characterization is 
used as input for a 
relay placement 
algorithm to address 
the identified 
coverage holes. The 
energy consumption 
reduction with the 
placement of relays 
is compared with 
respect to the case 
where no relays are 
deployed. 

The placement of a 
fixed relay to address 
a specific coverage 
hole avoids 
increasing the BS 
transmitted power. 
The coverage hole 
can be addressed 
with a power 
consumption 
reduction in the 
range between 35%-
70% depending on 
the BSand relay 
power consumption 
model.   

 
Relay 
Activation/Deactivation 
Process  

Take adequate 
decisions of relay 
activation to 
serve UEs with 
poor propagation 
conditions and 
adequate 
decisions of relay 
deactivation to 
save energy 
based on the 
number of UEs 
served by the 
relay.   

DQN (Deep Q- 
Network) that 
combines  
Reinforcement 
Learning (based 
on Q-learning) 
and Neural 
Networks. 

We compare the 
energy consumption 
reduction by 
deactivating the 
relay with respect to 
the case that the 
relay is not 
deactivated. 

The energy reduction 
that can be obtained 
for the considered 
relay  is around 
100Wh each day. It 
depends on the time 
the relay is activated. 
The maximum energy 
consumption that can 
be obtained is in the 
order 150Wh for 
each relay and each 
day. 

Computing Resource 
Allocation for UPFs 

Dynamically 
adapt the 
allocation of CPU 
resources to UPF 
load in order to 
enhance energy 
efficiency.  

Load predictors 
based on XGBoost 
Regressor or 
Prophet 
forecasting. 
Additional AI/ML 
methods to be 
decided.  

Consumption of a 
VPP-DPDK UPF 
server with realistic 
traffic and without 
energy efficient 
mechanisms.  

Compared to an UPF 
configured in 
performance mode 
to lead with peak 
traffic demands, 
energy savings could 
reach 30%-45% 
depending on data 
load.   

Joint Orchestration of 
vRANs and Edge AI 
Services 

Orchestrate the 
virtualized BS and 
the AI serviced 
running at the 
edge of the 
network in a joint 
manner. The 
objective is to 
minimize the 
energy 
consumption 
subject to a 
minimum value 
of the QoS for the 
users. 

Bayesian Online 
Learning, 
combining 
Gaussian 
processes used as 
surrogate 
function, and 
tailored 
acquisition 
function to 
handle the 
exploration-
exploitation 
trade-off. 
 

We compare against 
the optimal 
configuration of the 
system, (exhaustive 
search in the 
solution space) and 
SoTA ML solution in 
the literature. 

We provide a 
experimental 
characterization of 
the problem under 
study, showing the 
trade-offs among the 
different involved 
variables and 
performance metrics. 
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Table 3-12: Summary of AI/ML-based Methods 
Method AI/ML type  Training  Inference 

Dimensionality Reduction Supervised Learning 
Real data obtained from live 
networks. Not publicly 
available 

Required dimensionality 
of feature set for 
predictive model. 

Computing Resource 
Allocation for vRAN / RAN 
optimization and control 

Reinforcement Learning 

Real data obtained from our 
experimental platform. The 
dataset if publicly available 
at https://ieee-
dataport.org/documents/o-
ran-experimental-
evaluation-datasets 

The inference time is 
analysed in Sec 3.2.2.2. 
Suitable to run in the O-
RAN Non-RT RIC. 
 

Energy-efficient 5G carrier 
on/off switching 

Supervised Learning, 
Time series regression 

Real data from a Spanish 
MNO (70 sites, 2 months). 
Private dataset. 

Energy consumption of a 
carrier, non-RT domain 

Energy-efficient 5G carrier 
on/off switching 

Supervised Learning, 
Time series regression 

Real data from a Spanish 
MNO (70 sites, 2 months). 
Private dataset. 

Load of a carrier, non-RT 
domain 

Energy-efficient 5G carrier 
on/off switching 

Supervised Learning, 
Classification 

Real data from a Spanish 
MNO (70 sites, 2 months). 
Private dataset. 

5G carrier on/off switching 
decision, non-RT domain 

Coverage Hole Detection 
and Relay Placement. 

Unsupervised learning, 
clustering algorithm. 

No training is required. Real 
data that characterises the 
time/space distribution of 
the users. An example and 
details of the dataset is 
published in [47] 

Coverage hole 
characterization, non-RT 
domain. 

Relay 
activation/deactivation 
process 

Reinforcement Learning. 

Real data that characterises 
the time/space distribution 
of the users. An example 
and details of the dataset is 
published in [47] 

Decision of relay 
activation/deactivation, 
non-RT domain. 

CPU management for 
enhancing UPF Energy 
Efficiency 

Supervised Learning, 
Time series forecasting 

Real data from a Spanish 
MNO (70 sites, 2 months). 
Private dataset. 

Load of the UPF, non-RT 
domain 

Joint orchestration of 
vRANs and Edge AI 
services / RAN 
optimization and control 

Reinforcement Learning 

Real data obtained from our 
experimental platform. The 
dataset if publicly available 
at https://ieee-
dataport.org/documents/o-
ran-experimental-
evaluation-datasets 

Suitable to run in the O-
RAN Non-RT RIC. 
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 Summary and Conclusions 
The growing demand for 5G networks has brought significant challenges, particularly in managing the energy 
consumption of network infrastructure to achieve sustainability objectives without impacting the quality of 
the service and experience.  In Work Package 4, the BeGREEN project addresses these challenges by 
integrating AI/ML within the O-RAN framework, aiming at enhancing the decision-making of automated 
control-loops focused on energy efficiency optimisation. In this context, this BeGREEN D4.2 has presented 
the initial evaluation of the BeGREEN Intelligence Plane and of the proposed AI/ML methods to enhance the 
energy efficiency in the RAN and Edge domains.  

Before presenting the initial validation of the Intelligence Plane in Section 3.7, Chapter 2 described its 
architecture, extending the initial design provided in BeGREEN D4.1 and highlighting the implementation 
choices. The main conclusions of this deliverable regarding one of its key elements, the AI Engine, are 
summarised as follows: 

• The implementation of the AI Engine relies on two open-source frameworks: MLRun, which provides 
the required AI/ML services and hosts the trained ML models, and Nuclio, which implements the 
serverless serving of the ML models. 

• ML models are decoupled from control rApps and xApps but exposed to them through associated 
Assist AI Engine (AIA) rApps/xApps. This approach allows ML model developers to focus on the model 
implementation and optimisation, while rApp/xApp developers can focus on the control logic and 
optimisation objectives. It also facilitates ML model reuse by several control rApps/xApps. The 
reference model of the AIA rApps/xApps is introduced, highlight the implementation choices and the 
integration with O-RAN interfaces. 

• The exposure of ML models through AIA rApps in the non-RT RIC is done by exploiting the DME 
capabilities of the R1 interface. Particularly, the developed implementation relies on the ICS 
component provided by the OSC. This way, model outputs are exposed as information types, while 
AIA rApps, which communicate with the model serving endpoints in the AI Engine, perform as data 
producers. Finally, control rApps work as data consumers. 

• The evaluation of the Intelligence Plane focused on the mentioned points, detailing the 
demonstration performed at the 2024 EuCNC & 6G Summit. Particularly, it comprehends the 
definition of different information types related to ML models and serverless functions developed 
within BeGREEN and hosted in the AI Engine, the deployment of AIA rApps as data producers and 
the deployment of a control rApp periodically consuming the outputs of the models. A video 
showcasing the demonstration can be found in BeGREEN YouTube channel 26. The evaluation also 
includes a benchmarking of the capabilities of the implementation to provide data to the control 
rApps with a non-RT granularity, highlighting a trade-off between the number of data consumers 
and the periodicity of the control loops.  

• Future work regarding the exposure of ML models will mainly consist of the integration of the AI 
Engine with the near-RT RIC to demonstrate near-RT serverless serving. Additionally, the 
implementation and demonstration of additional AI/ML services such as monitoring and (re)training.  

The integration of the non-RT and near-RT RICs towards the management of energy saving optimisations is 
another of the key aspects being addressed by the Intelligence Plane. This deliverable presented the design 
choices regarding the implementation of energy saving A1 policies. Also, it introduced the main xApps that 
will be considered to achieve energy efficiency in cell management, e.g. to perform intelligent on/off 

 
26 https://www.youtube.com/watch?v=_N0JY0Sepgc 

https://www.youtube.com/watch?v=_N0JY0Sepgc
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switching:  the Energy Saving xApp, which manages the operation status of the cells according to the policies, 
and the Handover Manager xApp, which optimizes the handover process allowing to apply load balancing 
strategies. The independent management of these two xApps could lead to conflicts, for instance between 
energy saving policies and QoS or load-balancing policies. Therefore, a collaborative conflict mitigation 
approach is also presented in this deliverable. Future work will focus on implementing and demonstrating 
the coordination between RICs to manage energy saving optimisations and associated conflicts. 

The benefits of integrating AI/ML and O-RAN architecture are exploited by two main solutions presented in 
Chapter 3, whose key findings and future work is summarised as follows: 

• Compute resource allocation in vRAN: Considers the problem of allocating resources to vBS in vRAN 
scenarios under shared computing infrastructure. To this end, a RL-based solution is proposed, which 
considers the trade-off between channel quality, network demand, the CPU resources being 
assigned to the pool of vBS and the interference among vBS processes (noisy neighbour problem). 
Experimental evaluation demonstrates the feasibility of the proposed solutions, which can be 
applied as a non-RT control loop due to its low inference time, and the energy savings gains, 
achieving up to 17% reduction in overall computing resource usage without sacrificing throughput. 
Future work will consider an alternative approach, based on optimising the utilisation of assigned 
resources by the vBSs.   

• AI/ML and data-driven strategies for energy-efficient 5G carrier on/off switching: Explores energy 
saving opportunities in a 5G NSA deployment by switching off 5G cells and offloading UEs to 4G cells. 
The presented analysis is based on real data from an MNO, considering the cases where 5G PRBs can 
be offloaded to the 4G cells of the same site and sector. In the case of a specific high-loaded site in 
the city centre, this approach could result in the 5G cell being deactivated 56% of the time during 
the week. According to this scenario, different data and ML-driven approaches are considered to 
rule the cell on/off switching decision. Future work will extend the analysis of energy saving 
opportunities to all the sites of the dataset, also analysing the impact on the QoS of the UEs. 
Additionally, more advanced ML-assisted methods will be proposed.   

The integration of new technologies, which could enhance the energy efficiency of the network, but which 
are currently not being addressed by O-RAN architecture, is also being addressed in the BeGREEN project. In 
particular, this deliverable discussed the integration of RIS, ICAS and Relays. The integration of RIS will require 
extending E2 and O1 interfaces, denoted as E2+ and O1+ in BeGREEN architecture, to allow near-RT and non-
RT management by the RIS Actuator. In the case of E2, new SMs are proposed to enable real-time control 
and monitoring of the smart surfaces. Regarding ISAC, possible options to process the radio signals at 
different levels (i.e., at the O-RU, O-DU, O-CU or near-RT RIC) are presented. Future BeGREEN deliverables 
will further elaborate the implications on the Intelligence Plane and RAN domain integration.     

In the case of the Relays, it is proposed an integration based on O1 interfaces extensions, denoted as O1+ in 
the BeGREEN architecture, and a control component at the SMO which allows to apply non-RT optimisations. 
The proposed solution covers the full spectrum of relay-related procedures and their integration within the 
Intelligence Plance, starting with the detection of coverage holes, following with the identification of Relay 
UEs or placement for fixed relays, and concluding with the activation and deactivation of relays according to 
network conditions. In all the cases, specific AI/ML-based algorithmic solutions are presented and evaluated. 
Initial results, which are based on simulations according to a realistic scenario in a University Campus, 
characterize a specific coverage hole and show an energy consumption reduction in the range between 35%-
70% depending on the BS and relay energy consumption model. Future work will consider addressing all the 
identified coverage holes with fixed relays and/or RUEs.  

Regarding the Edge domain, and in a similar way to O-Cloud management, the BeGREEN architecture 
proposes interfaces and components between the SMO and the Edge controller which will allow to monitor 
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edge resources and apply dynamic resource allocation policies. Two AI/ML-assisted methods related to this 
area are proposed: 

• Traffic-aware compute resource management to enhance UPF energy efficiency: Addresses the 
dynamic management of the edge compute resources allocated to UPF according to the variation of 
the traffic demand. The work presented in BeGREEN D4.1 is extended by incorporating a high-
performance and more realistic, open-source implementation of the UPF using VPP and DPDK. The 
energy consumption characterization of this implementation reveals the necessity for energy-saving 
approaches, as it exhibits high CPU usage even in low-load scenarios. To this end, methods based on 
CPU frequency and thread scaling are evaluated. According to results in an experimental testbed and 
compared to an UPF configured in performance mode to lead with peak traffic demands, energy 
savings could reach 30%-45% depending on data load. Future work will integrate these methods with 
an ML-based decision-making process, utilizing UPF traffic forecasting to optimize resource 
management. 

• Joint orchestration of vRANs and Edge AI services: Based on the experimental characterization 
presented in D4.1, it is analysed the intertwined relationships between Edge AI services performance, 
the resources allocated to vBSs and Edge AI services, and the energy consumption of the RAN and 
Edge domains. A Bayesian online learning algorithm is proposed to tackle this challenge, formulated 
as a contextual bandit problem. Future work will include the experimental evaluation of the 
proposed algorithm and its comparison with state-of-the-art ML approaches in terms of data 
efficiency and adaptability.  

The Intelligence Plane also incorporates specific metrics to characterize the energy efficiency of the 
individual managed entities: the Energy Score and the Energy Rating. These metrics help to identify areas 
where energy consumption is highest and where optimizations can have the greatest impact. They not only 
aid in monitoring the effectiveness of energy-saving strategies but also enable dynamic adjustments through 
the proposed AI/ML-assisted control loops. The computation of these two metrics has been implemented as 
built-in serverless function in the Intelligence Plane through the Nuclio framework, and the exposure of the 
Energy Score function was demonstrated in the Intelligence Plane initial validation.  

Additionally, BeGREEN also addresses the energy consumption and efficiency of the ML models themselves. 
In Chapter 3, a method is presented to reduce the dimensionality of the training data without compromising 
the accuracy of models, such as predictors. The method evaluates the importance of the model features and 
gradually discards them until accuracy is affected. An initial evaluation, using an energy consumption 
predictor, is presented, showing that this method can reduce CPU cycles during retraining by up to 85%. 
Finally, note that in this deliverable the energy consumption of specific models is also reported, particularly 
the ones related to the relay-enhanced control use case. Future work will extend this analysis to other 
relevant ML models being proposed in BeGREEN, evaluating the trade-off between the achieved energy 
saving gains and the required energy consumption to train and serve the models.  
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